吸附
聚合物
聚丙烯酸
分子印迹聚合物
钪
水溶液中的金属离子
材料科学
钕
化学
化学工程
离子
无机化学
吸附
有机化学
选择性
催化作用
激光器
物理
光学
工程类
作者
Т. K. Jumadilov,R. G. Kondaurov,А. М. Imangazy
出处
期刊:Polymers
[Multidisciplinary Digital Publishing Institute]
日期:2022-01-13
卷期号:14 (2): 321-321
被引量:6
标识
DOI:10.3390/polym14020321
摘要
The goal of the present work is a comparative study of the effectiveness of the application of intergel systems and molecularly imprinted polymers for the selective sorption and separation of neodymium and scandium ions. The following physico-chemical methods of analysis were used in this study: colorimetry and atomic-emission spectroscopy. The functional polymers of polyacrylic acid (hPAA) and poly-4-vinylpyridine (hP4VP) in the intergel system undergo significant changes in the initial sorption properties. The remote interaction of the polymers in the intergel system hPAA-hP4VP provides mutual activation of these macromolecules, with subsequent transfer into a highly ionized state. The maximum sorption of neodymium and scandium ions is observed at molar ratios of 83%hPAA:17%hP4VP and 50%hPAA:50%hP4VP. Molecularly imprinted polymers MIP(Nd) and MIP(Sc) show good results in the sorption of Nd and Sc ions. Based on both these types of these macromolecular structures, principally new sorption methods have been developed. The method based on the application of the intergel system is cheaper and easier in application, but there is some accompanying sorption (about 10%) of another metal from the model solution during selective sorption and separation. Another method, based on the application of molecularly imprinted polymers, is more expensive and the sorption properties are higher, with the simultaneous sorption of the accompanying metal from the model solution.
科研通智能强力驱动
Strongly Powered by AbleSci AI