π-type orbital hybridization and reactive oxygen quenching induced by Se-doping for Li-rich Mn-based oxide cathode

阴极 电解质 材料科学 氧化物 电负性 化学物理 氧气 溶解 密度泛函理论 分析化学(期刊) 化学工程 电极 纳米技术 物理化学 化学 计算化学 工程类 有机化学 冶金 色谱法
作者
Jun Chen,Hongyi Chen,Wentao Deng,Xu Gao,Shouyi Yin,Yu Mei,Shu Zhang,Lianshan Ni,Jinqiang Gao,Huanqing Liu,Ye Tian,Li Yang,Xinglan Deng,Guoqiang Zou,Hongshuai Hou,Jingying Xie,Xiaobo Ji
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:51: 671-682 被引量:20
标识
DOI:10.1016/j.ensm.2022.06.004
摘要

Li-rich Mn-based oxide cathodes for next generation high-energy-density batteries are unprecedentedly enticing; however, its implementation has been largely plagued by capacity fading and potential decline, mainly associated with the irreversible lattice oxygen redox and structure rearrangements. Hereby, electrochemically stable Li-rich Mn-based oxide cathode is successfully designed by manipulating molecular polarity within host structure through the introduction of Se. Notably, the restructured electronic distribution around lattice oxygen is aroused from weak electronegativity of Se in the bulk. It is beneficial for enhancing the π-type orbital hybridization between O 2p and Mn 3d(t2g) due to the lowered energy level of O 2p states, resulting in the mitigation of lattice oxygen loss, which is strongly validated by ex-situ soft/hard X-ray absorption spectroscopy coupled with density functional theory calculations. Concomitantly, reactive oxygen species is deactivated with anti-aging effects in the primary/second particle sub-surface, considerably suppressing the SN2 attack related to electrolyte decomposition and subsequent transition metals dissolution to render a well-knit cathode electrolyte interface, intensively verified by time-off light secondary-ion mass spectrometry. Greatly, the as-designed Se-LRM delivers excellent long cycling stability after 400 loops with only a 0.029% capacity fading and 1.37 mV potential decline per cycle. Given this, this elaborate work might inaugurate a potential avenue for rationally tuning the structure/interface evolution towards advanced electrodes in lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
漂亮的倒挂金钩完成签到,获得积分10
刚刚
OVERLXRD完成签到,获得积分10
刚刚
果果完成签到,获得积分20
1秒前
1秒前
充电宝应助无聊先知采纳,获得10
2秒前
小黎完成签到,获得积分10
2秒前
齐俞如发布了新的文献求助10
2秒前
陈嘉木完成签到,获得积分10
2秒前
2秒前
3秒前
小小发布了新的文献求助10
4秒前
4秒前
5秒前
相知完成签到,获得积分20
5秒前
研友_Z1Xa0n发布了新的文献求助10
6秒前
6秒前
7秒前
苏菲的金发哈尔完成签到,获得积分10
7秒前
particularc完成签到,获得积分10
7秒前
耍酷激光豆完成签到,获得积分10
7秒前
小于发布了新的文献求助10
8秒前
8秒前
碗碗完成签到,获得积分20
9秒前
lixiao应助azdax采纳,获得10
9秒前
小夏咕噜发布了新的文献求助10
9秒前
susong987完成签到,获得积分10
9秒前
大模型应助萌萌雨采纳,获得10
9秒前
9秒前
timemaster666应助hu采纳,获得10
10秒前
科研小白完成签到,获得积分10
10秒前
熙欢完成签到,获得积分10
10秒前
Hey发布了新的文献求助10
10秒前
重回地球完成签到,获得积分10
11秒前
11秒前
fanrongfeng发布了新的文献求助10
11秒前
脑洞疼应助QAQAQAQ采纳,获得10
11秒前
统领七届发布了新的文献求助10
12秒前
薰硝壤应助木子弓长采纳,获得20
12秒前
cugwzr发布了新的文献求助10
12秒前
哇哇哇完成签到,获得积分10
13秒前
高分求助中
Evolution 10000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147582
求助须知:如何正确求助?哪些是违规求助? 2798713
关于积分的说明 7830993
捐赠科研通 2455488
什么是DOI,文献DOI怎么找? 1306841
科研通“疑难数据库(出版商)”最低求助积分说明 627934
版权声明 601587