阴极
电解质
材料科学
氧化物
电负性
化学物理
氧气
溶解
密度泛函理论
分析化学(期刊)
化学工程
电极
纳米技术
物理化学
化学
计算化学
工程类
有机化学
冶金
色谱法
作者
Jun Chen,Hongyi Chen,Wentao Deng,Xu Gao,Shouyi Yin,Yu Mei,Shu Zhang,Lianshan Ni,Jinqiang Gao,Huanqing Liu,Ye Tian,Li Yang,Xinglan Deng,Guoqiang Zou,Hongshuai Hou,Jingying Xie,Xiaobo Ji
标识
DOI:10.1016/j.ensm.2022.06.004
摘要
Li-rich Mn-based oxide cathodes for next generation high-energy-density batteries are unprecedentedly enticing; however, its implementation has been largely plagued by capacity fading and potential decline, mainly associated with the irreversible lattice oxygen redox and structure rearrangements. Hereby, electrochemically stable Li-rich Mn-based oxide cathode is successfully designed by manipulating molecular polarity within host structure through the introduction of Se. Notably, the restructured electronic distribution around lattice oxygen is aroused from weak electronegativity of Se in the bulk. It is beneficial for enhancing the π-type orbital hybridization between O 2p and Mn 3d(t2g) due to the lowered energy level of O 2p states, resulting in the mitigation of lattice oxygen loss, which is strongly validated by ex-situ soft/hard X-ray absorption spectroscopy coupled with density functional theory calculations. Concomitantly, reactive oxygen species is deactivated with anti-aging effects in the primary/second particle sub-surface, considerably suppressing the SN2 attack related to electrolyte decomposition and subsequent transition metals dissolution to render a well-knit cathode electrolyte interface, intensively verified by time-off light secondary-ion mass spectrometry. Greatly, the as-designed Se-LRM delivers excellent long cycling stability after 400 loops with only a 0.029% capacity fading and 1.37 mV potential decline per cycle. Given this, this elaborate work might inaugurate a potential avenue for rationally tuning the structure/interface evolution towards advanced electrodes in lithium-ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI