π-type orbital hybridization and reactive oxygen quenching induced by Se-doping for Li-rich Mn-based oxide cathode

阴极 电解质 材料科学 氧化物 电负性 化学物理 氧气 溶解 密度泛函理论 分析化学(期刊) 化学工程 电极 纳米技术 物理化学 化学 计算化学 工程类 有机化学 冶金 色谱法
作者
Jun Chen,Hongyi Chen,Wentao Deng,Xu Gao,Shouyi Yin,Yu Mei,Shu Zhang,Lianshan Ni,Jinqiang Gao,Huanqing Liu,Ye Tian,Li Yang,Xinglan Deng,Guoqiang Zou,Hongshuai Hou,Jingying Xie,Xiaobo Ji
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:51: 671-682 被引量:21
标识
DOI:10.1016/j.ensm.2022.06.004
摘要

Li-rich Mn-based oxide cathodes for next generation high-energy-density batteries are unprecedentedly enticing; however, its implementation has been largely plagued by capacity fading and potential decline, mainly associated with the irreversible lattice oxygen redox and structure rearrangements. Hereby, electrochemically stable Li-rich Mn-based oxide cathode is successfully designed by manipulating molecular polarity within host structure through the introduction of Se. Notably, the restructured electronic distribution around lattice oxygen is aroused from weak electronegativity of Se in the bulk. It is beneficial for enhancing the π-type orbital hybridization between O 2p and Mn 3d(t2g) due to the lowered energy level of O 2p states, resulting in the mitigation of lattice oxygen loss, which is strongly validated by ex-situ soft/hard X-ray absorption spectroscopy coupled with density functional theory calculations. Concomitantly, reactive oxygen species is deactivated with anti-aging effects in the primary/second particle sub-surface, considerably suppressing the SN2 attack related to electrolyte decomposition and subsequent transition metals dissolution to render a well-knit cathode electrolyte interface, intensively verified by time-off light secondary-ion mass spectrometry. Greatly, the as-designed Se-LRM delivers excellent long cycling stability after 400 loops with only a 0.029% capacity fading and 1.37 mV potential decline per cycle. Given this, this elaborate work might inaugurate a potential avenue for rationally tuning the structure/interface evolution towards advanced electrodes in lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
et完成签到,获得积分10
刚刚
桂魄完成签到,获得积分10
刚刚
刚刚
1秒前
wang发布了新的文献求助200
2秒前
2秒前
2秒前
英姑应助snowdrift采纳,获得10
2秒前
2秒前
2秒前
jy完成签到 ,获得积分10
2秒前
NexusExplorer应助立马毕业采纳,获得10
3秒前
在水一方应助123采纳,获得10
4秒前
科目三应助白华苍松采纳,获得10
5秒前
通~发布了新的文献求助10
5秒前
CipherSage应助千幻采纳,获得10
5秒前
5秒前
dddddd完成签到,获得积分10
5秒前
桂魄发布了新的文献求助10
5秒前
年轻的咖啡豆完成签到,获得积分20
6秒前
6秒前
绿洲发布了新的文献求助10
6秒前
6秒前
7秒前
aDou完成签到 ,获得积分10
7秒前
脑洞疼应助bc采纳,获得10
7秒前
NEMO发布了新的文献求助10
7秒前
李健应助mammoth采纳,获得20
7秒前
熊boy发布了新的文献求助10
7秒前
天真思雁发布了新的文献求助10
7秒前
8秒前
情怀应助蔡蔡不菜菜采纳,获得10
8秒前
shouyu29应助MADKAI采纳,获得10
9秒前
CipherSage应助MADKAI采纳,获得10
9秒前
乐乐应助MADKAI采纳,获得10
9秒前
ChangSZ应助MADKAI采纳,获得10
9秒前
乐乐应助MADKAI采纳,获得10
9秒前
小飞七应助MADKAI采纳,获得10
9秒前
Akim应助MADKAI采纳,获得20
9秒前
科研通AI5应助MADKAI采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762