A new strategy for preparation of high-performance onion-like anode material from coal tar pitch residue

化学工程 材料科学 阳极 碳化 煤焦油 微观结构 无定形碳 热解 无定形固体 热解炭 电化学 电解质 有机化学 化学 复合材料 电极 扫描电子显微镜 物理化学 工程类
作者
Xiongchao Lin,Yukun Zhang,Zhe Sheng,Lei Huang,Hongfeng Gao,Caihong Wang,Yonggang Wang
出处
期刊:Journal of Analytical and Applied Pyrolysis [Elsevier]
卷期号:166: 105591-105591 被引量:5
标识
DOI:10.1016/j.jaap.2022.105591
摘要

The quinoline insoluble substances (QI) were separated from coal tar pitch (CTP) residue using solvent extraction sedimentation method. The formation mechanism, microstructural characteristics, and electrochemical performances of QI were systematically evaluated. The generation of QI sample was thought to be induced by the interactional force of large lamellar pyrolytic aromatic hydrocarbon fragments in CTP. Since, the as-prepared QIs with spherical particles possessing a wide size distribution were beneficial to improve the tap density of anode, it was proposed to prepare anode material for lithium-ion battery in a large-scale. The microstructure of QI particles was varied from the surface to the inner section. Particularly, the cyclic annular graphitic layers were clearly observed indicating the formation of onion-like texture. After carbonization at 700 °C and 900 °C, vast of bent and faceted planes and/or polycyclic aromatic hydrocarbon clusters could be gradually transformed into closed cyclic structures; thus, the outer graphitic layers were locally distorted. Furthermore, the QIs after activation could fabricate amorphous carbon coated granules. Such defective structures greatly increased QI’s specific surface area to be 2538 m2/g. And the amorphous carbon coated graphitic layer structures favored of the electrolyte penetration, thus, providing more appropriate sites for ions storage. Eventually, the electrochemical performance of activated QIs was significantly improved to achieve a reversible capacity of 1011.4 mAh/g after 100 cycles of charge-discharge at a current density of 100 mA/g.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
littlewhite关注了科研通微信公众号
1秒前
1秒前
零点起步完成签到,获得积分10
1秒前
慕青应助大力的含卉采纳,获得10
1秒前
善良过客发布了新的文献求助10
2秒前
2秒前
2秒前
dildil发布了新的文献求助10
2秒前
2秒前
hu970发布了新的文献求助10
3秒前
3秒前
王思鲁发布了新的文献求助30
3秒前
七个小矮人完成签到,获得积分10
4秒前
Aria完成签到,获得积分10
4秒前
感性的安露应助结实雪卉采纳,获得20
5秒前
零点起步发布了新的文献求助10
6秒前
故意的傲玉应助Ll采纳,获得10
6秒前
斯文败类应助xiuxiu_27采纳,获得10
6秒前
胖子完成签到,获得积分10
6秒前
王巧巧完成签到,获得积分10
6秒前
tangsuyun发布了新的文献求助10
7秒前
祝顺遂发布了新的文献求助10
7秒前
Seven发布了新的文献求助10
7秒前
土拨鼠完成签到 ,获得积分10
8秒前
邢夏之发布了新的文献求助10
8秒前
漂亮芹菜完成签到,获得积分10
8秒前
ZXH完成签到,获得积分10
8秒前
Evelyn完成签到 ,获得积分10
8秒前
习习应助sb采纳,获得10
9秒前
9秒前
9秒前
斯文败类应助liu采纳,获得10
10秒前
10秒前
gy发布了新的文献求助10
10秒前
12秒前
pinging应助566采纳,获得10
12秒前
乾明少侠完成签到 ,获得积分10
13秒前
13秒前
开心重要完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759