Physics-informed Lightweight Temporal Convolution Networks for Fault Prognostics Associated to Bearing Stiffness Degradation

卷积(计算机科学) 推论 方位(导航) 特征(语言学) 刚度 振动 断层(地质) 物理 人工智能 计算机科学 人工神经网络 语言学 哲学 地震学 地质学 量子力学 热力学
作者
Weikun Deng,Khanh T.P. Nguyen,Christian Gogu,Jérôme Morio,Kamal Medjaher
标识
DOI:10.36001/phme.2022.v7i1.3365
摘要

This paper proposes hybrid methods using physics-informed (PI) lightweight Temporal Convolution Neural Network (PITCN) for bearings’ remaining useful life (RUL) prediction under stiffness degradation. It includes three PI hybrid models: a) PI Feature model (PIFM) — constructing physics-informed health indicator (PIHI) to augment the feature space, b) PI Layer model (PILM)—encoding the physics governing equations in a hidden layer, and c) PI Layer Based Loss model (PILLM)—designing PI conflict loss, taking into account the difference before and after integration of the physics input-output relations involved module to the loss function. We simulated 200 different bearing stiffness degradations, using their discrete monitored vibration signals to verify the effectiveness of the proposed method. We also investigate their inference process through feature heat map analysis to interpret how the models melt physics knowledge to assist in capturing the degradation trend. The physics knowledge considered in this paper is the dynamic relationship between vibration amplitude and stiffness in a damped forced vibration model. The results show that all three PITCN models effectively capture degradation-related trend information and perform better than the vanilla lightweight TCN. Furthermore, the visualization of the feature channels highlights the important role of physics information in model training. Channels containing physics information demonstrate higher correlation with results as they significantly dominate the heat map compared to other channels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
直率起眸完成签到,获得积分10
1秒前
1秒前
京昭发布了新的文献求助10
1秒前
1秒前
Lv发布了新的文献求助10
1秒前
阿容完成签到,获得积分10
1秒前
木炭完成签到,获得积分10
1秒前
搜集达人应助badada采纳,获得10
2秒前
顾矜应助zdd采纳,获得10
2秒前
3秒前
林夏应助伯赏盼晴采纳,获得10
3秒前
Hugsy完成签到,获得积分10
4秒前
4秒前
沐沐完成签到,获得积分20
5秒前
zhaoyg发布了新的文献求助10
5秒前
Naomi发布了新的文献求助10
6秒前
6秒前
Bovr完成签到,获得积分20
6秒前
6秒前
6秒前
星辰大海应助友好代亦采纳,获得10
7秒前
7秒前
李健的小迷弟应助Zzziihao采纳,获得10
7秒前
7秒前
深情安青应助Alex采纳,获得10
8秒前
8秒前
8秒前
大胆以蕊完成签到,获得积分10
8秒前
田様应助young406采纳,获得10
9秒前
9秒前
Kkkkkk完成签到,获得积分10
9秒前
10秒前
absorb发布了新的文献求助10
10秒前
lingling发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
湛湛发布了新的文献求助10
11秒前
lll完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791