Physics-informed Lightweight Temporal Convolution Networks for Fault Prognostics Associated to Bearing Stiffness Degradation

卷积(计算机科学) 推论 方位(导航) 特征(语言学) 刚度 振动 断层(地质) 物理 人工智能 计算机科学 人工神经网络 语言学 哲学 地震学 地质学 量子力学 热力学
作者
Weikun Deng,Khanh T.P. Nguyen,Christian Gogu,Jérôme Morio,Kamal Medjaher
标识
DOI:10.36001/phme.2022.v7i1.3365
摘要

This paper proposes hybrid methods using physics-informed (PI) lightweight Temporal Convolution Neural Network (PITCN) for bearings’ remaining useful life (RUL) prediction under stiffness degradation. It includes three PI hybrid models: a) PI Feature model (PIFM) — constructing physics-informed health indicator (PIHI) to augment the feature space, b) PI Layer model (PILM)—encoding the physics governing equations in a hidden layer, and c) PI Layer Based Loss model (PILLM)—designing PI conflict loss, taking into account the difference before and after integration of the physics input-output relations involved module to the loss function. We simulated 200 different bearing stiffness degradations, using their discrete monitored vibration signals to verify the effectiveness of the proposed method. We also investigate their inference process through feature heat map analysis to interpret how the models melt physics knowledge to assist in capturing the degradation trend. The physics knowledge considered in this paper is the dynamic relationship between vibration amplitude and stiffness in a damped forced vibration model. The results show that all three PITCN models effectively capture degradation-related trend information and perform better than the vanilla lightweight TCN. Furthermore, the visualization of the feature channels highlights the important role of physics information in model training. Channels containing physics information demonstrate higher correlation with results as they significantly dominate the heat map compared to other channels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yank0452发布了新的文献求助10
刚刚
浮云发布了新的文献求助10
刚刚
刚刚
1213发布了新的文献求助10
刚刚
1秒前
黑脸大汉应助yyyy采纳,获得10
1秒前
找呀找完成签到,获得积分10
1秒前
1秒前
2秒前
蛋炒饭发布了新的文献求助10
3秒前
研友_LpQGjn发布了新的文献求助10
3秒前
似水流年发布了新的文献求助10
4秒前
4秒前
宋依依发布了新的文献求助10
5秒前
lily完成签到,获得积分10
5秒前
5秒前
bkagyin应助蔡1采纳,获得10
5秒前
6秒前
XxxxxtPuCO发布了新的文献求助10
6秒前
6秒前
昏睡的蟠桃应助Rivers采纳,获得30
7秒前
无宇伦比发布了新的文献求助10
7秒前
xkk完成签到,获得积分10
7秒前
CodeCraft应助嘻嘻嘻采纳,获得20
7秒前
8秒前
善学以致用应助雨点采纳,获得10
8秒前
8秒前
8秒前
8秒前
9秒前
9秒前
9秒前
WFH完成签到,获得积分10
10秒前
蓝精灵完成签到,获得积分10
10秒前
10秒前
某种臭脸美女完成签到 ,获得积分10
10秒前
多经历经历完成签到,获得积分10
10秒前
nn完成签到,获得积分10
10秒前
简单语山发布了新的文献求助10
10秒前
Frank应助XxxxxtPuCO采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531011
求助须知:如何正确求助?哪些是违规求助? 4619962
关于积分的说明 14570839
捐赠科研通 4559429
什么是DOI,文献DOI怎么找? 2498419
邀请新用户注册赠送积分活动 1478380
关于科研通互助平台的介绍 1449913