Physics-informed Lightweight Temporal Convolution Networks for Fault Prognostics Associated to Bearing Stiffness Degradation

卷积(计算机科学) 推论 方位(导航) 特征(语言学) 刚度 振动 断层(地质) 物理 人工智能 计算机科学 人工神经网络 语言学 哲学 地震学 地质学 量子力学 热力学
作者
Weikun Deng,Khanh T.P. Nguyen,Christian Gogu,Jérôme Morio,Kamal Medjaher
标识
DOI:10.36001/phme.2022.v7i1.3365
摘要

This paper proposes hybrid methods using physics-informed (PI) lightweight Temporal Convolution Neural Network (PITCN) for bearings’ remaining useful life (RUL) prediction under stiffness degradation. It includes three PI hybrid models: a) PI Feature model (PIFM) — constructing physics-informed health indicator (PIHI) to augment the feature space, b) PI Layer model (PILM)—encoding the physics governing equations in a hidden layer, and c) PI Layer Based Loss model (PILLM)—designing PI conflict loss, taking into account the difference before and after integration of the physics input-output relations involved module to the loss function. We simulated 200 different bearing stiffness degradations, using their discrete monitored vibration signals to verify the effectiveness of the proposed method. We also investigate their inference process through feature heat map analysis to interpret how the models melt physics knowledge to assist in capturing the degradation trend. The physics knowledge considered in this paper is the dynamic relationship between vibration amplitude and stiffness in a damped forced vibration model. The results show that all three PITCN models effectively capture degradation-related trend information and perform better than the vanilla lightweight TCN. Furthermore, the visualization of the feature channels highlights the important role of physics information in model training. Channels containing physics information demonstrate higher correlation with results as they significantly dominate the heat map compared to other channels.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助自由笑晴采纳,获得10
1秒前
1秒前
lqy发布了新的文献求助10
1秒前
天天快乐应助天真的冬寒采纳,获得10
2秒前
HHHHH完成签到,获得积分10
3秒前
大模型应助guozizi采纳,获得200
3秒前
cc完成签到,获得积分10
4秒前
一个快乐的吃货完成签到,获得积分10
4秒前
4秒前
英俊书雪完成签到,获得积分10
4秒前
5秒前
linlin完成签到,获得积分10
5秒前
YunJi完成签到,获得积分20
7秒前
7秒前
chenjj发布了新的文献求助10
8秒前
科研通AI2S应助大方雁露采纳,获得10
8秒前
ccooico完成签到,获得积分10
9秒前
10秒前
10秒前
10秒前
11秒前
11秒前
jianghs发布了新的文献求助30
12秒前
狂野的罡发布了新的文献求助20
12秒前
zjx完成签到,获得积分10
13秒前
辛勤采柳完成签到,获得积分10
14秒前
14秒前
14秒前
15秒前
华仔应助kysl采纳,获得10
15秒前
15秒前
lch发布了新的文献求助10
16秒前
艾泽拉斯的囚徒完成签到,获得积分10
16秒前
紫电青霜完成签到 ,获得积分10
17秒前
Tian发布了新的文献求助10
17秒前
SciGPT应助追寻的巧曼采纳,获得10
18秒前
闪闪大米发布了新的文献求助10
18秒前
18秒前
自信寻真发布了新的文献求助10
19秒前
无花果应助科研狗采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589024
求助须知:如何正确求助?哪些是违规求助? 4671817
关于积分的说明 14789701
捐赠科研通 4627219
什么是DOI,文献DOI怎么找? 2532047
邀请新用户注册赠送积分活动 1500655
关于科研通互助平台的介绍 1468382