Learning the representation of surrogate safety measures to identify traffic conflict

聚类分析 无监督学习 计算机科学 交通冲突 特征学习 毒物控制 机器学习 编码器 代表(政治) 人工智能 编码 统计的 碰撞 弹道 自编码 数据挖掘 深度学习 计算机安全 工程类 交通拥挤 数学 运输工程 统计 政治 天文 物理 政治学 法学 基因 医学 浮动车数据 生物化学 操作系统 环境卫生 化学
作者
Jiajian Lu,Offer Grembek,Mark Hansen
出处
期刊:Accident Analysis & Prevention [Elsevier BV]
卷期号:174: 106755-106755 被引量:11
标识
DOI:10.1016/j.aap.2022.106755
摘要

Traffic conflict can be identified by the presence of evasive actions or the amount of temporal (spatial) proximity measures like time-to-collision (TTC). However, it is not enough to use only one kind of measures in some scenarios and it is hard to set a threshold for those measures. This paper proposed a method to identify traffic conflict by learning the representation of TTC and driver maneuver profiles with deep unsupervised learning and clustering the representations into traffic conflict and non-conflict clusters. We first trained a transformer encoder to encode sequences of surrogate safety measures into some latent space with unsupervised pre-training. Second, we identified informative clusters in the latent space by calculating the statistic summaries and visualizing trajectory pairs of each cluster. Some clusters are interpreted as traffic conflict clusters because they have small TTC, large deceleration rate and intertwining trajectories and they can be further interpreted as rear-end or angle conflicts. Moreover, the identified traffic conflicts contain critical conditions from the two vehicles in an interaction and one vehicle perceives them as abnormal and takes evasive action to avoid crashes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助mark采纳,获得10
刚刚
pluto应助从容的香菇采纳,获得10
刚刚
科研通AI5应助cccyq采纳,获得10
1秒前
科研狗完成签到,获得积分10
3秒前
英俊的铭应助gs19960828采纳,获得10
4秒前
MrTStar完成签到 ,获得积分10
6秒前
淡定的惜完成签到,获得积分20
9秒前
完美世界应助fengliurencai采纳,获得10
14秒前
思源应助大面包采纳,获得10
15秒前
sandra完成签到 ,获得积分10
16秒前
iris601完成签到,获得积分10
18秒前
时笙发布了新的文献求助30
20秒前
温柔的迎荷完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
25秒前
25秒前
传奇3应助快乐一江采纳,获得10
26秒前
传统的纸飞机完成签到 ,获得积分10
26秒前
26秒前
26秒前
王子安应助lilila666采纳,获得10
28秒前
大面包发布了新的文献求助10
29秒前
情怀应助漫山采纳,获得10
30秒前
zzz完成签到,获得积分10
31秒前
gs19960828发布了新的文献求助10
32秒前
幸福大白发布了新的文献求助30
32秒前
脑洞疼应助jbhb采纳,获得10
36秒前
36秒前
gs19960828完成签到,获得积分10
37秒前
Younglee完成签到,获得积分10
41秒前
41秒前
xiaoxuan完成签到,获得积分10
42秒前
43秒前
Garnieta完成签到,获得积分10
44秒前
彤光赫显发布了新的文献求助10
45秒前
45秒前
浔城游侠完成签到,获得积分10
46秒前
46秒前
失眠的板栗完成签到,获得积分10
47秒前
蝶步韶华发布了新的文献求助10
49秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989406
求助须知:如何正确求助?哪些是违规求助? 3531522
关于积分的说明 11254187
捐赠科研通 3270174
什么是DOI,文献DOI怎么找? 1804901
邀请新用户注册赠送积分活动 882105
科研通“疑难数据库(出版商)”最低求助积分说明 809174