材料科学
离子键合
弹性体
离子电导率
导电体
电导率
离子液体
离子
纳米技术
复合材料
电极
有机化学
化学
电解质
物理化学
催化作用
作者
Peiru Shi,Yufeng Wang,Kening Wan,Chao Zhang,Tianxi Liu
标识
DOI:10.1002/adfm.202112293
摘要
Abstract The development of ionic conductors with extreme stretchability, superior ionic conductivity, and harsh‐environment resistance is urgent while challenging because the tailoring of these performances is mutually exclusive. Herein, a hydrophobicity‐constrained association strategy is presented for fabricating a liquid‐free ion‐conducting fluorinated elastomer (ICFE) with microphase‐separated structures. Hydrophilic nanodomains with long‐range ordering and selectively enriched Li ions provided high‐efficient conductive pathways, yielding impressive room‐temperature ionic conductivity of 3.5 × 10 –3 S m –1 . Hydrophobic nanodomains with abundant and reversible hydrogen bonds endow the ICFE with superior damage‐tolerant performances including ultrastretchability (>6000%), large toughness (17.1 MJ m –3 ) with notch insensitivity, antifatigue ability, and high‐efficiency self‐healability. Due to its liquid‐free characteristic and surface‐enriched hydrophobic nanodomains, the ICFE demonstrates an extreme temperature tolerance (−20 to 300 °C) and unique underwater resistance. The resultant ICFE is assembled into a proof‐of‐concept skin‐inspired sensor, showing impressive capacitive sensing performance with high sensitivity and wide‐strain‐range linearity (gauge factor to 1.0 in a strain range of 0–350%), excellent durability (>1000 cycles), and unique waterproofness in monitoring of complex human motions. It is believed that the hydrophobicity‐constrained association method boosts the fabrication of stretchable ionic conductors holding a great promise in skin‐inspired ionotronics with harsh‐environment tolerance.
科研通智能强力驱动
Strongly Powered by AbleSci AI