Heterogeneous Semi-Asynchronous Federated Learning in Internet of Things: A Multi-Armed Bandit Approach

异步通信 计算机科学 延迟(音频) 计算 人工智能 互联网 机器学习 分布式计算 计算机网络 万维网 算法 电信
作者
Shuai Chen,Xiumin Wang,Pan Zhou,Weiwei Wu,Weiwei Lin,Zhenyu Wang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:6 (5): 1113-1124 被引量:10
标识
DOI:10.1109/tetci.2022.3146871
摘要

Federated learning (FL) has recently received significant attention in Internet of Things, due to its capability of enabling multiple clients to collaboratively train machine learning models using neural networks, without sharing their privacy-sensitive data. However, due to the heterogeneity of clients in their computation and communication capability, they might not return the training model to the server at the same time, which may result in high waiting latency at the server, especially in synchronous FL. Although asynchronous FL can reduce the waiting latency, aggregating global model in a completely asynchronous way may lead to some local models out of date, resulting in low training accuracy. To address the above issues, this paper aims to propose a novel Heterogeneous Semi-Asynchronous FL mechanism, named HSA_FL . Firstly, we use a Multi-Armed Bandit (MAB) approach to identify the heterogenous communication and computation capabilities of clients, based on which, we assign different training intensities to clients. Generally, the clients with lower capabilities will be assigned with less number of local updates. In addition, instead of waiting all the clients to return their training models or immediately aggregation after getting a single local model, this paper proposes two aggregation rules, named adaptive update and fixed adaptive, respectively. Finally, simulation results show that the proposed scheme can effectively reduce the training time and improve the training accuracy as compared with some benchmark algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
2秒前
2秒前
平常的德天完成签到 ,获得积分10
3秒前
aaaaa发布了新的文献求助10
3秒前
迢迢笙箫应助宝贝采纳,获得10
5秒前
7秒前
JERRI发布了新的文献求助10
7秒前
yunidesuuu发布了新的文献求助10
7秒前
领导范儿应助柳易槐采纳,获得10
7秒前
Akim应助努力中的小鹿采纳,获得10
7秒前
zhaoxiao完成签到 ,获得积分10
7秒前
善学以致用应助科研小白采纳,获得10
8秒前
8秒前
8秒前
呼呼呼发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
Leex完成签到,获得积分10
12秒前
lucfer完成签到 ,获得积分10
12秒前
13秒前
aixue发布了新的文献求助10
14秒前
14秒前
嘿嘿嘿完成签到,获得积分10
14秒前
spurs17发布了新的文献求助10
16秒前
Leex发布了新的文献求助10
18秒前
chercher完成签到 ,获得积分10
18秒前
尽力完成签到,获得积分10
18秒前
18秒前
顺利琦发布了新的文献求助10
19秒前
20秒前
李健应助liciky采纳,获得10
20秒前
炙热的若枫完成签到 ,获得积分10
20秒前
聪慧的斑马完成签到,获得积分10
21秒前
烂漫迎波完成签到,获得积分10
22秒前
23秒前
23秒前
guilin应助心内小白采纳,获得10
24秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142116
求助须知:如何正确求助?哪些是违规求助? 2793064
关于积分的说明 7805155
捐赠科研通 2449387
什么是DOI,文献DOI怎么找? 1303185
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291