Heterogeneous Semi-Asynchronous Federated Learning in Internet of Things: A Multi-Armed Bandit Approach

异步通信 计算机科学 延迟(音频) 计算 人工智能 互联网 机器学习 分布式计算 计算机网络 万维网 算法 电信
作者
Shuai Chen,Xiumin Wang,Pan Zhou,Weiwei Wu,Weiwei Lin,Zhenyu Wang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:6 (5): 1113-1124 被引量:10
标识
DOI:10.1109/tetci.2022.3146871
摘要

Federated learning (FL) has recently received significant attention in Internet of Things, due to its capability of enabling multiple clients to collaboratively train machine learning models using neural networks, without sharing their privacy-sensitive data. However, due to the heterogeneity of clients in their computation and communication capability, they might not return the training model to the server at the same time, which may result in high waiting latency at the server, especially in synchronous FL. Although asynchronous FL can reduce the waiting latency, aggregating global model in a completely asynchronous way may lead to some local models out of date, resulting in low training accuracy. To address the above issues, this paper aims to propose a novel Heterogeneous Semi-Asynchronous FL mechanism, named HSA_FL . Firstly, we use a Multi-Armed Bandit (MAB) approach to identify the heterogenous communication and computation capabilities of clients, based on which, we assign different training intensities to clients. Generally, the clients with lower capabilities will be assigned with less number of local updates. In addition, instead of waiting all the clients to return their training models or immediately aggregation after getting a single local model, this paper proposes two aggregation rules, named adaptive update and fixed adaptive, respectively. Finally, simulation results show that the proposed scheme can effectively reduce the training time and improve the training accuracy as compared with some benchmark algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iiiiiuy发布了新的文献求助10
1秒前
zr完成签到,获得积分10
1秒前
科研通AI6应助甜兮采纳,获得10
1秒前
li发布了新的文献求助10
1秒前
2秒前
希望天下0贩的0应助zv采纳,获得10
2秒前
Healer完成签到,获得积分10
2秒前
MICA关注了科研通微信公众号
2秒前
2秒前
bkagyin应助望空采纳,获得10
3秒前
高强发布了新的文献求助20
3秒前
ytzhang0587给花花的求助进行了留言
4秒前
超帅的靖完成签到,获得积分20
4秒前
陈杰发布了新的文献求助10
4秒前
4秒前
天123发布了新的文献求助10
5秒前
5秒前
大朋发布了新的文献求助10
5秒前
哆啦A梦完成签到,获得积分10
5秒前
6秒前
王肖儿发布了新的文献求助10
6秒前
壑舟完成签到,获得积分10
7秒前
茸茸茸完成签到,获得积分10
7秒前
范范778完成签到 ,获得积分10
8秒前
一切都好发布了新的文献求助30
8秒前
淡定井完成签到 ,获得积分10
8秒前
銭銭銭完成签到,获得积分20
8秒前
顺利鱼发布了新的文献求助30
8秒前
9秒前
zzzllove发布了新的文献求助10
9秒前
波波发布了新的文献求助10
10秒前
耶耶耶耶发布了新的文献求助10
10秒前
11秒前
Ava应助漫天采纳,获得10
11秒前
11秒前
11秒前
曹家如完成签到,获得积分10
11秒前
12秒前
奕师完成签到,获得积分10
12秒前
思源应助听话的初之采纳,获得10
12秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726