Heterogeneous Semi-Asynchronous Federated Learning in Internet of Things: A Multi-Armed Bandit Approach

异步通信 计算机科学 延迟(音频) 计算 人工智能 互联网 机器学习 分布式计算 计算机网络 万维网 算法 电信
作者
Shuai Chen,Xiumin Wang,Pan Zhou,Weiwei Wu,Weiwei Lin,Zhenyu Wang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:6 (5): 1113-1124 被引量:10
标识
DOI:10.1109/tetci.2022.3146871
摘要

Federated learning (FL) has recently received significant attention in Internet of Things, due to its capability of enabling multiple clients to collaboratively train machine learning models using neural networks, without sharing their privacy-sensitive data. However, due to the heterogeneity of clients in their computation and communication capability, they might not return the training model to the server at the same time, which may result in high waiting latency at the server, especially in synchronous FL. Although asynchronous FL can reduce the waiting latency, aggregating global model in a completely asynchronous way may lead to some local models out of date, resulting in low training accuracy. To address the above issues, this paper aims to propose a novel Heterogeneous Semi-Asynchronous FL mechanism, named HSA_FL . Firstly, we use a Multi-Armed Bandit (MAB) approach to identify the heterogenous communication and computation capabilities of clients, based on which, we assign different training intensities to clients. Generally, the clients with lower capabilities will be assigned with less number of local updates. In addition, instead of waiting all the clients to return their training models or immediately aggregation after getting a single local model, this paper proposes two aggregation rules, named adaptive update and fixed adaptive, respectively. Finally, simulation results show that the proposed scheme can effectively reduce the training time and improve the training accuracy as compared with some benchmark algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助冷艳莛采纳,获得10
刚刚
华仔应助remoon1104采纳,获得10
2秒前
yy完成签到,获得积分10
2秒前
song完成签到 ,获得积分10
2秒前
3秒前
一枝独秀完成签到 ,获得积分10
3秒前
兴奋的乐巧完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
6秒前
整齐半青完成签到 ,获得积分10
6秒前
8秒前
沐黎完成签到 ,获得积分10
8秒前
cing完成签到,获得积分10
8秒前
小胡完成签到,获得积分10
9秒前
henry应助TomatoRin采纳,获得50
9秒前
优美紫槐应助医研采纳,获得10
9秒前
冰滋滋完成签到,获得积分10
10秒前
科研通AI2S应助沐风采纳,获得10
10秒前
今晚吃什么完成签到 ,获得积分10
11秒前
11秒前
LZH发布了新的文献求助10
11秒前
爱讲点小道理完成签到,获得积分10
12秒前
沉静胜完成签到,获得积分10
12秒前
冷艳莛发布了新的文献求助10
13秒前
13秒前
11发布了新的文献求助10
14秒前
123yaoyao发布了新的文献求助10
15秒前
15秒前
bing完成签到,获得积分10
16秒前
lth完成签到 ,获得积分10
16秒前
ZunyeLiu完成签到,获得积分10
16秒前
Summering666完成签到,获得积分10
17秒前
17秒前
大个应助linyu采纳,获得10
17秒前
18秒前
霜之哀伤完成签到,获得积分10
18秒前
XS_QI完成签到 ,获得积分10
19秒前
唧唧咕咕发布了新的文献求助10
19秒前
Ck发布了新的文献求助10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603665
求助须知:如何正确求助?哪些是违规求助? 4688648
关于积分的说明 14855380
捐赠科研通 4694577
什么是DOI,文献DOI怎么找? 2540936
邀请新用户注册赠送积分活动 1507124
关于科研通互助平台的介绍 1471814