清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Heterogeneous Semi-Asynchronous Federated Learning in Internet of Things: A Multi-Armed Bandit Approach

异步通信 计算机科学 延迟(音频) 计算 人工智能 互联网 机器学习 分布式计算 计算机网络 万维网 算法 电信
作者
Shuai Chen,Xiumin Wang,Pan Zhou,Weiwei Wu,Weiwei Lin,Zhenyu Wang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:6 (5): 1113-1124 被引量:10
标识
DOI:10.1109/tetci.2022.3146871
摘要

Federated learning (FL) has recently received significant attention in Internet of Things, due to its capability of enabling multiple clients to collaboratively train machine learning models using neural networks, without sharing their privacy-sensitive data. However, due to the heterogeneity of clients in their computation and communication capability, they might not return the training model to the server at the same time, which may result in high waiting latency at the server, especially in synchronous FL. Although asynchronous FL can reduce the waiting latency, aggregating global model in a completely asynchronous way may lead to some local models out of date, resulting in low training accuracy. To address the above issues, this paper aims to propose a novel Heterogeneous Semi-Asynchronous FL mechanism, named HSA_FL . Firstly, we use a Multi-Armed Bandit (MAB) approach to identify the heterogenous communication and computation capabilities of clients, based on which, we assign different training intensities to clients. Generally, the clients with lower capabilities will be assigned with less number of local updates. In addition, instead of waiting all the clients to return their training models or immediately aggregation after getting a single local model, this paper proposes two aggregation rules, named adaptive update and fixed adaptive, respectively. Finally, simulation results show that the proposed scheme can effectively reduce the training time and improve the training accuracy as compared with some benchmark algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
t铁核桃1985完成签到 ,获得积分0
5秒前
点点完成签到 ,获得积分10
7秒前
7秒前
ppf发布了新的文献求助10
11秒前
21秒前
空儒完成签到 ,获得积分10
23秒前
Criminology34应助CXS采纳,获得10
33秒前
41秒前
lsl完成签到 ,获得积分10
45秒前
Criminology34应助CXS采纳,获得10
48秒前
Tree_QD完成签到 ,获得积分10
49秒前
无极2023完成签到 ,获得积分10
55秒前
仙女完成签到 ,获得积分10
57秒前
1分钟前
kittykitten完成签到 ,获得积分10
1分钟前
刘丰完成签到 ,获得积分10
1分钟前
爆米花应助ppf采纳,获得10
1分钟前
正直的夏真完成签到 ,获得积分10
1分钟前
1分钟前
慕豁发布了新的文献求助10
1分钟前
1分钟前
科科通通完成签到,获得积分10
1分钟前
慕豁完成签到,获得积分10
2分钟前
2分钟前
2分钟前
yushiolo完成签到 ,获得积分10
2分钟前
ppf发布了新的文献求助10
2分钟前
邓洁宜完成签到,获得积分10
2分钟前
lyj完成签到 ,获得积分0
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
拼搏乐珍完成签到,获得积分10
2分钟前
持卿发布了新的文献求助80
2分钟前
迅速的幻雪完成签到 ,获得积分10
2分钟前
sting发布了新的文献求助10
3分钟前
帅气思雁发布了新的文献求助10
3分钟前
Lny发布了新的文献求助20
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584801
求助须知:如何正确求助?哪些是违规求助? 4668686
关于积分的说明 14771600
捐赠科研通 4614971
什么是DOI,文献DOI怎么找? 2530239
邀请新用户注册赠送积分活动 1499103
关于科研通互助平台的介绍 1467551