亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Heterogeneous Semi-Asynchronous Federated Learning in Internet of Things: A Multi-Armed Bandit Approach

异步通信 计算机科学 延迟(音频) 计算 人工智能 互联网 机器学习 分布式计算 计算机网络 万维网 算法 电信
作者
Shuai Chen,Xiumin Wang,Pan Zhou,Weiwei Wu,Weiwei Lin,Zhenyu Wang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:6 (5): 1113-1124 被引量:10
标识
DOI:10.1109/tetci.2022.3146871
摘要

Federated learning (FL) has recently received significant attention in Internet of Things, due to its capability of enabling multiple clients to collaboratively train machine learning models using neural networks, without sharing their privacy-sensitive data. However, due to the heterogeneity of clients in their computation and communication capability, they might not return the training model to the server at the same time, which may result in high waiting latency at the server, especially in synchronous FL. Although asynchronous FL can reduce the waiting latency, aggregating global model in a completely asynchronous way may lead to some local models out of date, resulting in low training accuracy. To address the above issues, this paper aims to propose a novel Heterogeneous Semi-Asynchronous FL mechanism, named HSA_FL . Firstly, we use a Multi-Armed Bandit (MAB) approach to identify the heterogenous communication and computation capabilities of clients, based on which, we assign different training intensities to clients. Generally, the clients with lower capabilities will be assigned with less number of local updates. In addition, instead of waiting all the clients to return their training models or immediately aggregation after getting a single local model, this paper proposes two aggregation rules, named adaptive update and fixed adaptive, respectively. Finally, simulation results show that the proposed scheme can effectively reduce the training time and improve the training accuracy as compared with some benchmark algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
power完成签到,获得积分10
刚刚
忞航完成签到 ,获得积分10
10秒前
BowieHuang应助科研通管家采纳,获得10
17秒前
迷你小熊猫完成签到,获得积分10
18秒前
31秒前
852应助迷你小熊猫采纳,获得10
38秒前
xxxxx炒菜完成签到,获得积分10
42秒前
xxxxx炒菜发布了新的文献求助50
46秒前
48秒前
51秒前
瘦瘦以亦发布了新的文献求助10
51秒前
独特的高山完成签到,获得积分10
51秒前
54秒前
54秒前
科研通AI2S应助十六采纳,获得10
1分钟前
FashionBoy应助独特的高山采纳,获得10
1分钟前
1分钟前
万能图书馆应助daodao采纳,获得10
1分钟前
脸小呆呆发布了新的文献求助10
1分钟前
1分钟前
1分钟前
hxjnx发布了新的文献求助10
1分钟前
daodao完成签到,获得积分10
1分钟前
Amber发布了新的文献求助30
1分钟前
1分钟前
1分钟前
hxjnx完成签到,获得积分20
1分钟前
单薄绿竹完成签到,获得积分10
1分钟前
ksak607155发布了新的文献求助10
1分钟前
ksak607155完成签到,获得积分10
1分钟前
yanglinhai完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
beiwei完成签到 ,获得积分10
1分钟前
sy完成签到,获得积分10
1分钟前
十六发布了新的文献求助10
1分钟前
1分钟前
ZZY发布了新的文献求助10
1分钟前
Krim完成签到 ,获得积分0
2分钟前
桐桐应助科研通管家采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590427
求助须知:如何正确求助?哪些是违规求助? 4674712
关于积分的说明 14795204
捐赠科研通 4631648
什么是DOI,文献DOI怎么找? 2532710
邀请新用户注册赠送积分活动 1501268
关于科研通互助平台的介绍 1468617