Heterogeneous Semi-Asynchronous Federated Learning in Internet of Things: A Multi-Armed Bandit Approach

异步通信 计算机科学 延迟(音频) 计算 人工智能 互联网 机器学习 分布式计算 计算机网络 万维网 算法 电信
作者
Shuai Chen,Xiumin Wang,Pan Zhou,Weiwei Wu,Weiwei Lin,Zhenyu Wang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:6 (5): 1113-1124 被引量:10
标识
DOI:10.1109/tetci.2022.3146871
摘要

Federated learning (FL) has recently received significant attention in Internet of Things, due to its capability of enabling multiple clients to collaboratively train machine learning models using neural networks, without sharing their privacy-sensitive data. However, due to the heterogeneity of clients in their computation and communication capability, they might not return the training model to the server at the same time, which may result in high waiting latency at the server, especially in synchronous FL. Although asynchronous FL can reduce the waiting latency, aggregating global model in a completely asynchronous way may lead to some local models out of date, resulting in low training accuracy. To address the above issues, this paper aims to propose a novel Heterogeneous Semi-Asynchronous FL mechanism, named HSA_FL . Firstly, we use a Multi-Armed Bandit (MAB) approach to identify the heterogenous communication and computation capabilities of clients, based on which, we assign different training intensities to clients. Generally, the clients with lower capabilities will be assigned with less number of local updates. In addition, instead of waiting all the clients to return their training models or immediately aggregation after getting a single local model, this paper proposes two aggregation rules, named adaptive update and fixed adaptive, respectively. Finally, simulation results show that the proposed scheme can effectively reduce the training time and improve the training accuracy as compared with some benchmark algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JACK完成签到,获得积分10
1秒前
科研欣路完成签到,获得积分10
1秒前
勿庸完成签到,获得积分10
1秒前
1秒前
王乐多完成签到 ,获得积分10
1秒前
锅里有两条鱼完成签到 ,获得积分10
1秒前
2秒前
姚断天发布了新的文献求助10
2秒前
CBY发布了新的文献求助10
2秒前
庞洋发布了新的文献求助10
2秒前
2秒前
hetao286发布了新的文献求助10
3秒前
zzc完成签到 ,获得积分10
3秒前
蔺建薇完成签到,获得积分10
3秒前
whatever举报求助违规成功
3秒前
Hungrylunch举报求助违规成功
3秒前
幕帆举报求助违规成功
3秒前
3秒前
3秒前
lanjq兰坚强完成签到,获得积分10
3秒前
夏昼关注了科研通微信公众号
4秒前
4秒前
RONG发布了新的文献求助10
4秒前
艺玲发布了新的文献求助10
4秒前
核桃发布了新的文献求助10
4秒前
橘络完成签到 ,获得积分10
5秒前
5秒前
5秒前
5秒前
研友_VZG7GZ应助gaos采纳,获得10
5秒前
内向青文发布了新的文献求助10
5秒前
克林沙星完成签到,获得积分10
5秒前
6秒前
杜嘟嘟发布了新的文献求助10
6秒前
kento驳回了欢欢应助
6秒前
7秒前
Ava应助李双艳采纳,获得10
7秒前
wfy1227完成签到,获得积分10
7秒前
Nefelibata完成签到,获得积分10
7秒前
搜集达人应助Elaine采纳,获得10
7秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740