亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Heterogeneous Semi-Asynchronous Federated Learning in Internet of Things: A Multi-Armed Bandit Approach

异步通信 计算机科学 延迟(音频) 计算 人工智能 互联网 机器学习 分布式计算 计算机网络 万维网 算法 电信
作者
Shuai Chen,Xiumin Wang,Pan Zhou,Weiwei Wu,Weiwei Lin,Zhenyu Wang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:6 (5): 1113-1124 被引量:10
标识
DOI:10.1109/tetci.2022.3146871
摘要

Federated learning (FL) has recently received significant attention in Internet of Things, due to its capability of enabling multiple clients to collaboratively train machine learning models using neural networks, without sharing their privacy-sensitive data. However, due to the heterogeneity of clients in their computation and communication capability, they might not return the training model to the server at the same time, which may result in high waiting latency at the server, especially in synchronous FL. Although asynchronous FL can reduce the waiting latency, aggregating global model in a completely asynchronous way may lead to some local models out of date, resulting in low training accuracy. To address the above issues, this paper aims to propose a novel Heterogeneous Semi-Asynchronous FL mechanism, named HSA_FL . Firstly, we use a Multi-Armed Bandit (MAB) approach to identify the heterogenous communication and computation capabilities of clients, based on which, we assign different training intensities to clients. Generally, the clients with lower capabilities will be assigned with less number of local updates. In addition, instead of waiting all the clients to return their training models or immediately aggregation after getting a single local model, this paper proposes two aggregation rules, named adaptive update and fixed adaptive, respectively. Finally, simulation results show that the proposed scheme can effectively reduce the training time and improve the training accuracy as compared with some benchmark algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
30秒前
吕敬瑶发布了新的文献求助10
32秒前
janice发布了新的文献求助10
36秒前
科目三应助janice采纳,获得10
41秒前
hachi完成签到,获得积分10
59秒前
1分钟前
自由的雅旋完成签到 ,获得积分10
1分钟前
TBI发布了新的文献求助10
1分钟前
1分钟前
天天天晴完成签到 ,获得积分10
2分钟前
2分钟前
车访枫完成签到 ,获得积分10
2分钟前
sxmt123456789发布了新的文献求助30
2分钟前
SimonShaw完成签到 ,获得积分10
2分钟前
Esther发布了新的文献求助10
2分钟前
balko完成签到,获得积分10
3分钟前
3分钟前
chen发布了新的文献求助10
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
3分钟前
cccxxxyyy发布了新的文献求助10
3分钟前
科研通AI2S应助阔达的凝丝采纳,获得10
3分钟前
我是老大应助Amymyshirley采纳,获得30
3分钟前
阔达的凝丝给阔达的凝丝的求助进行了留言
3分钟前
3分钟前
王吉萍完成签到 ,获得积分10
3分钟前
Clay完成签到 ,获得积分10
3分钟前
sxmt123456789发布了新的文献求助30
3分钟前
hfhkjh完成签到,获得积分10
3分钟前
归雁完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
Tales完成签到 ,获得积分10
4分钟前
如意葶发布了新的文献求助10
4分钟前
霸气的玉兰完成签到 ,获得积分10
4分钟前
传奇3应助曦耀采纳,获得10
4分钟前
Sylvia卉完成签到,获得积分10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634843
求助须知:如何正确求助?哪些是违规求助? 4733993
关于积分的说明 14989356
捐赠科研通 4792596
什么是DOI,文献DOI怎么找? 2559701
邀请新用户注册赠送积分活动 1520021
关于科研通互助平台的介绍 1480086