Heterogeneous Semi-Asynchronous Federated Learning in Internet of Things: A Multi-Armed Bandit Approach

异步通信 计算机科学 延迟(音频) 计算 人工智能 互联网 机器学习 分布式计算 计算机网络 万维网 算法 电信
作者
Shuai Chen,Xiumin Wang,Pan Zhou,Weiwei Wu,Weiwei Lin,Zhenyu Wang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:6 (5): 1113-1124 被引量:10
标识
DOI:10.1109/tetci.2022.3146871
摘要

Federated learning (FL) has recently received significant attention in Internet of Things, due to its capability of enabling multiple clients to collaboratively train machine learning models using neural networks, without sharing their privacy-sensitive data. However, due to the heterogeneity of clients in their computation and communication capability, they might not return the training model to the server at the same time, which may result in high waiting latency at the server, especially in synchronous FL. Although asynchronous FL can reduce the waiting latency, aggregating global model in a completely asynchronous way may lead to some local models out of date, resulting in low training accuracy. To address the above issues, this paper aims to propose a novel Heterogeneous Semi-Asynchronous FL mechanism, named HSA_FL . Firstly, we use a Multi-Armed Bandit (MAB) approach to identify the heterogenous communication and computation capabilities of clients, based on which, we assign different training intensities to clients. Generally, the clients with lower capabilities will be assigned with less number of local updates. In addition, instead of waiting all the clients to return their training models or immediately aggregation after getting a single local model, this paper proposes two aggregation rules, named adaptive update and fixed adaptive, respectively. Finally, simulation results show that the proposed scheme can effectively reduce the training time and improve the training accuracy as compared with some benchmark algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DG发布了新的文献求助10
1秒前
科研通AI6应助高兴的滑板采纳,获得10
1秒前
David驳回了情怀应助
1秒前
海纳百川发布了新的文献求助10
1秒前
闫博发布了新的文献求助10
1秒前
陌回应助xcchh采纳,获得30
2秒前
贵月发布了新的文献求助10
2秒前
2秒前
zyh发布了新的文献求助10
2秒前
Dream发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
灵波完成签到,获得积分10
3秒前
4秒前
4秒前
su发布了新的文献求助10
4秒前
Ava应助abc采纳,获得10
5秒前
5秒前
hulahula发布了新的文献求助10
5秒前
Canace发布了新的文献求助10
5秒前
云飏发布了新的文献求助10
5秒前
杨晓明发布了新的文献求助10
6秒前
科研通AI6应助chunyeliangchuan采纳,获得30
6秒前
感动绮晴完成签到,获得积分10
7秒前
7秒前
冷艳寒梦发布了新的文献求助10
8秒前
大个应助高兴星月采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
丘山发布了新的文献求助10
8秒前
领导范儿应助Pendulium采纳,获得10
8秒前
刘小姐发布了新的文献求助10
9秒前
9秒前
生动曼冬发布了新的文献求助10
9秒前
Orange应助111采纳,获得10
9秒前
james发布了新的文献求助50
9秒前
浮游应助lizhuang采纳,获得10
9秒前
10秒前
hh发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5576558
求助须知:如何正确求助?哪些是违规求助? 4661927
关于积分的说明 14738788
捐赠科研通 4602503
什么是DOI,文献DOI怎么找? 2525869
邀请新用户注册赠送积分活动 1495750
关于科研通互助平台的介绍 1465414