Heterogeneous Semi-Asynchronous Federated Learning in Internet of Things: A Multi-Armed Bandit Approach

异步通信 计算机科学 延迟(音频) 计算 人工智能 互联网 机器学习 分布式计算 计算机网络 万维网 算法 电信
作者
Shuai Chen,Xiumin Wang,Pan Zhou,Weiwei Wu,Weiwei Lin,Zhenyu Wang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:6 (5): 1113-1124 被引量:10
标识
DOI:10.1109/tetci.2022.3146871
摘要

Federated learning (FL) has recently received significant attention in Internet of Things, due to its capability of enabling multiple clients to collaboratively train machine learning models using neural networks, without sharing their privacy-sensitive data. However, due to the heterogeneity of clients in their computation and communication capability, they might not return the training model to the server at the same time, which may result in high waiting latency at the server, especially in synchronous FL. Although asynchronous FL can reduce the waiting latency, aggregating global model in a completely asynchronous way may lead to some local models out of date, resulting in low training accuracy. To address the above issues, this paper aims to propose a novel Heterogeneous Semi-Asynchronous FL mechanism, named HSA_FL . Firstly, we use a Multi-Armed Bandit (MAB) approach to identify the heterogenous communication and computation capabilities of clients, based on which, we assign different training intensities to clients. Generally, the clients with lower capabilities will be assigned with less number of local updates. In addition, instead of waiting all the clients to return their training models or immediately aggregation after getting a single local model, this paper proposes two aggregation rules, named adaptive update and fixed adaptive, respectively. Finally, simulation results show that the proposed scheme can effectively reduce the training time and improve the training accuracy as compared with some benchmark algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陶醉太阳完成签到,获得积分10
刚刚
热心市民小红花应助朱洪采纳,获得10
刚刚
呆鸥完成签到,获得积分10
刚刚
1秒前
bkagyin应助123采纳,获得10
1秒前
魅猫使者发布了新的文献求助10
4秒前
昭谏完成签到,获得积分10
4秒前
7秒前
卡酷发布了新的文献求助10
7秒前
小鱼完成签到,获得积分10
9秒前
桐桐应助羊可采纳,获得10
10秒前
含糊的紫菜完成签到 ,获得积分10
12秒前
12秒前
wooooo完成签到,获得积分10
12秒前
小阳发布了新的文献求助10
14秒前
14秒前
苹果摇伽完成签到,获得积分10
14秒前
15秒前
张怀民完成签到,获得积分10
18秒前
19秒前
hr完成签到,获得积分10
20秒前
个性的汲发布了新的文献求助10
20秒前
典雅的丹寒完成签到,获得积分10
20秒前
热心市民小红花应助朱洪采纳,获得10
20秒前
羊可完成签到 ,获得积分10
20秒前
21秒前
22秒前
超帅连虎发布了新的文献求助30
22秒前
魅猫使者完成签到,获得积分10
24秒前
26秒前
hr发布了新的文献求助10
26秒前
烟花应助个性的汲采纳,获得10
28秒前
lzz发布了新的文献求助10
28秒前
青天白日完成签到,获得积分10
29秒前
yeayeayea完成签到,获得积分10
29秒前
量子星尘发布了新的文献求助10
30秒前
秦摆烂发布了新的文献求助10
30秒前
知还发布了新的文献求助10
31秒前
CCCCCL完成签到,获得积分10
31秒前
精灵大夫发布了新的文献求助10
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961001
求助须知:如何正确求助?哪些是违规求助? 3507225
关于积分的说明 11134609
捐赠科研通 3239650
什么是DOI,文献DOI怎么找? 1790276
邀请新用户注册赠送积分活动 872341
科研通“疑难数据库(出版商)”最低求助积分说明 803150