Heterogeneous Semi-Asynchronous Federated Learning in Internet of Things: A Multi-Armed Bandit Approach

异步通信 计算机科学 延迟(音频) 计算 人工智能 互联网 机器学习 分布式计算 计算机网络 万维网 算法 电信
作者
Shuai Chen,Xiumin Wang,Pan Zhou,Weiwei Wu,Weiwei Lin,Zhenyu Wang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:6 (5): 1113-1124 被引量:10
标识
DOI:10.1109/tetci.2022.3146871
摘要

Federated learning (FL) has recently received significant attention in Internet of Things, due to its capability of enabling multiple clients to collaboratively train machine learning models using neural networks, without sharing their privacy-sensitive data. However, due to the heterogeneity of clients in their computation and communication capability, they might not return the training model to the server at the same time, which may result in high waiting latency at the server, especially in synchronous FL. Although asynchronous FL can reduce the waiting latency, aggregating global model in a completely asynchronous way may lead to some local models out of date, resulting in low training accuracy. To address the above issues, this paper aims to propose a novel Heterogeneous Semi-Asynchronous FL mechanism, named HSA_FL . Firstly, we use a Multi-Armed Bandit (MAB) approach to identify the heterogenous communication and computation capabilities of clients, based on which, we assign different training intensities to clients. Generally, the clients with lower capabilities will be assigned with less number of local updates. In addition, instead of waiting all the clients to return their training models or immediately aggregation after getting a single local model, this paper proposes two aggregation rules, named adaptive update and fixed adaptive, respectively. Finally, simulation results show that the proposed scheme can effectively reduce the training time and improve the training accuracy as compared with some benchmark algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助lv采纳,获得10
1秒前
Jasper应助十次方采纳,获得10
1秒前
vc发布了新的文献求助10
1秒前
1秒前
AneyWinter66应助miqilin采纳,获得10
1秒前
2秒前
阔达板栗关注了科研通微信公众号
2秒前
zcz发布了新的文献求助30
2秒前
跳跃可仁完成签到,获得积分10
2秒前
3秒前
mumu完成签到,获得积分10
3秒前
4秒前
YY发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
丘比特应助明理的帆布鞋采纳,获得10
5秒前
我是老大应助俊逸的翅膀采纳,获得10
5秒前
6秒前
万能图书馆应助科研狗采纳,获得10
6秒前
yznfly应助欢喜夏之采纳,获得50
6秒前
6秒前
6秒前
wwwwww完成签到,获得积分10
6秒前
可靠幼旋发布了新的文献求助10
6秒前
6秒前
hahaagain完成签到,获得积分10
6秒前
丘比特应助傅取采纳,获得10
6秒前
7秒前
哈哈哈完成签到 ,获得积分10
7秒前
VVzza完成签到,获得积分20
8秒前
usu发布了新的文献求助10
8秒前
hyx7735完成签到,获得积分10
8秒前
努力挪砖完成签到,获得积分10
8秒前
Jasper应助alex采纳,获得10
9秒前
白白嫩嫩发布了新的文献求助20
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Signals, Systems, and Signal Processing 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612993
求助须知:如何正确求助?哪些是违规求助? 4698217
关于积分的说明 14896593
捐赠科研通 4734695
什么是DOI,文献DOI怎么找? 2546766
邀请新用户注册赠送积分活动 1510830
关于科研通互助平台的介绍 1473494