Heterogeneous Semi-Asynchronous Federated Learning in Internet of Things: A Multi-Armed Bandit Approach

异步通信 计算机科学 延迟(音频) 计算 人工智能 互联网 机器学习 分布式计算 计算机网络 万维网 算法 电信
作者
Shuai Chen,Xiumin Wang,Pan Zhou,Weiwei Wu,Weiwei Lin,Zhenyu Wang
出处
期刊:IEEE transactions on emerging topics in computational intelligence [Institute of Electrical and Electronics Engineers]
卷期号:6 (5): 1113-1124 被引量:10
标识
DOI:10.1109/tetci.2022.3146871
摘要

Federated learning (FL) has recently received significant attention in Internet of Things, due to its capability of enabling multiple clients to collaboratively train machine learning models using neural networks, without sharing their privacy-sensitive data. However, due to the heterogeneity of clients in their computation and communication capability, they might not return the training model to the server at the same time, which may result in high waiting latency at the server, especially in synchronous FL. Although asynchronous FL can reduce the waiting latency, aggregating global model in a completely asynchronous way may lead to some local models out of date, resulting in low training accuracy. To address the above issues, this paper aims to propose a novel Heterogeneous Semi-Asynchronous FL mechanism, named HSA_FL . Firstly, we use a Multi-Armed Bandit (MAB) approach to identify the heterogenous communication and computation capabilities of clients, based on which, we assign different training intensities to clients. Generally, the clients with lower capabilities will be assigned with less number of local updates. In addition, instead of waiting all the clients to return their training models or immediately aggregation after getting a single local model, this paper proposes two aggregation rules, named adaptive update and fixed adaptive, respectively. Finally, simulation results show that the proposed scheme can effectively reduce the training time and improve the training accuracy as compared with some benchmark algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
猪猪半桃发布了新的文献求助10
1秒前
2秒前
wwwzy1996完成签到,获得积分10
2秒前
wyby发布了新的文献求助10
2秒前
李庭福发布了新的文献求助10
3秒前
3秒前
4秒前
zijin发布了新的文献求助10
4秒前
莱因哈特别着急完成签到,获得积分10
4秒前
肉丝儿完成签到,获得积分10
5秒前
7秒前
8秒前
吴晨曦完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
YUAN发布了新的文献求助50
9秒前
FeiFeiup发布了新的文献求助10
11秒前
13秒前
深情安青应助wyby采纳,获得10
13秒前
15秒前
吃猫的鱼完成签到 ,获得积分10
15秒前
16秒前
上官若男应助zbj662采纳,获得15
16秒前
Criminology34应助落寞的寒云采纳,获得10
16秒前
16秒前
9377应助zijin采纳,获得10
18秒前
vax发布了新的文献求助10
19秒前
CipherSage应助小九采纳,获得10
20秒前
FashionBoy应助GY采纳,获得10
20秒前
yuyu发布了新的文献求助10
20秒前
24秒前
科研通AI6应助龙龙龙采纳,获得10
24秒前
24秒前
25秒前
25秒前
汉堡包应助13采纳,获得10
25秒前
好学发布了新的文献求助10
26秒前
栗子发布了新的文献求助20
31秒前
鱼遇完成签到,获得积分10
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425524
求助须知:如何正确求助?哪些是违规求助? 4539563
关于积分的说明 14168635
捐赠科研通 4457118
什么是DOI,文献DOI怎么找? 2444431
邀请新用户注册赠送积分活动 1435362
关于科研通互助平台的介绍 1412800