Enabling nanoimprint simulator for quality verification: process-design co-optimization toward high-volume manufacturing

纳米压印光刻 抵抗 计算机科学 过程(计算) 模拟 计算 多边形网格 材料科学 纳米技术 计算机图形学(图像) 制作 图层(电子) 算法 替代医学 病理 操作系统 医学
作者
Junichi Seki,Yuichiro Oguchi,Naoki Kiyohara,Koshiro Suzuki,Kohei Nagane,Shintaro Narioka,Takahiro Nakayama,Yoshihiro Shiode,Sentaro Aihara,Toshiya Asano
出处
期刊:Journal of micro/nanopatterning, materials, and metrology [SPIE - International Society for Optical Engineering]
卷期号:21 (01)
标识
DOI:10.1117/1.jmm.21.1.011005
摘要

Computational technologies are still in the course of development for nanoimprint lithography (NIL). Only a few simulators are applicable to the nanoimprint process, and these simulators are desired by device manufacturers as part of their daily toolbox. The most challenging issue in NIL process simulation is the scale difference of each component of the system. The template pattern depth and the residual resist film thickness are generally of the order of a few tens of nanometers, whereas the process needs to work over the entire shot size, which is typically of the order of several hundred square millimeters. This amounts to a scale difference of the order of 106. Therefore, in order to calculate the nanoimprint process with conventional fluid structure interaction simulators, an enormous number of meshes is required, which results in computation times that are unacceptable. We introduce a process simulator which directly inputs the process parameters, simulates the whole imprinting process, and evaluates the quality of the resulting resist film for jet and flash imprint lithography process. To overcome the scale differences, our simulator utilizes analytically integrated expressions which reduce the dimensions of the calculation region. In addition, the simulator can independently consider the resist droplet configurations and calculate the droplet coalescence, thereby predicting the distribution of the non-fill areas which originate from the trapped gas between the droplets. The simulator has been applied to the actual NIL system and some examples of its applications are presented here.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Angleli完成签到,获得积分10
刚刚
虚幻的捕完成签到,获得积分10
刚刚
刚刚
1秒前
2秒前
科研通AI6应助zhuhuaipu采纳,获得10
2秒前
原子完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
科研通AI6应助李月采纳,获得10
3秒前
3秒前
4秒前
4秒前
Owen应助HHZ采纳,获得10
4秒前
5秒前
6秒前
6秒前
隐形曼青应助LC采纳,获得10
7秒前
无极微光应助垃圾筐采纳,获得20
7秒前
秋梨膏完成签到 ,获得积分10
8秒前
8秒前
haifang发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
在水一方应助HHZ采纳,获得10
9秒前
9秒前
郭郭郭发布了新的文献求助10
10秒前
学术菜鸡123完成签到,获得积分10
10秒前
陈明健完成签到,获得积分10
10秒前
举人烧烤发布了新的文献求助10
10秒前
12秒前
12秒前
12秒前
13秒前
Bill发布了新的文献求助10
13秒前
dd发布了新的文献求助10
13秒前
852应助QAQ采纳,获得10
14秒前
lhm完成签到,获得积分10
14秒前
桐桐应助举人烧烤采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666560
求助须知:如何正确求助?哪些是违规求助? 4882496
关于积分的说明 15117625
捐赠科研通 4825585
什么是DOI,文献DOI怎么找? 2583523
邀请新用户注册赠送积分活动 1537653
关于科研通互助平台的介绍 1495895