Distributed Dimensionality Reduction Fusion Estimation for Stochastic Uncertain Systems With Fading Measurements Subject to Mixed Attacks

衰退 协方差 协方差交集 降维 计算机科学 估计员 维数之咒 算法 数学优化 数学 人工智能 统计 协方差函数 解码方法
作者
Sha Fan,Huaicheng Yan,Hao Zhang,Yueying Wang,Yan Peng,Shaorong Xie
出处
期刊:IEEE transactions on systems, man, and cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (11): 7053-7064 被引量:9
标识
DOI:10.1109/tsmc.2022.3156848
摘要

In this article, the distributed fusion estimation issue with the dimensionality reduction strategy under DoS attacks and deception attacks is investigated for a class of stochastic uncertain systems with fading measurements. The stochastic uncertainties existed in the system and measurement equations are represented by state-dependent noises. The fading measurements are depicted by stochastic variables with known statistics. Then, a novel attack and compensation model is proposed to display the randomly occurring behaviors of the DoS attacks and the deception attacks within a unified framework. Furthermore, a distributed multisensor fusion estimation (DMSFE) algorithm is presented. An explicit form of dimensionality reduction is designed against attacks. Stability conditions are derived such that the mean square errors (MSEs) of the proposed DMSFE are bounded. A sequential covariance intersection fusion estimator (SCIFE) is designed to prevent the cross fusion covariance matrices calculating, which owns lower accuracy by smaller computation cost than DMSFE. An illustrative example is provided to show the effectiveness and merits of the proposed algorithm.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马铃薯发布了新的文献求助10
刚刚
林上草完成签到,获得积分10
刚刚
duan00100完成签到,获得积分10
刚刚
刚刚
Akim应助Dr.Tang采纳,获得10
1秒前
晨曦完成签到,获得积分10
1秒前
迟大猫应助细腻白柏采纳,获得10
1秒前
白白完成签到,获得积分10
2秒前
2秒前
2秒前
安静的难破完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
飞跃完成签到,获得积分10
3秒前
3秒前
3秒前
HEIKU应助热心的早晨采纳,获得10
4秒前
xxx发布了新的文献求助10
5秒前
科研通AI5应助nuliya采纳,获得10
5秒前
kira完成签到,获得积分10
6秒前
刘星星发布了新的文献求助30
7秒前
7秒前
7秒前
7秒前
汉堡包应助LYM采纳,获得10
7秒前
吉势甘发布了新的文献求助10
7秒前
zhu应助七块采纳,获得10
8秒前
9秒前
SweepingMonk应助kkkkkw采纳,获得10
9秒前
Summer完成签到,获得积分10
9秒前
研友_VZG7GZ应助starryxm采纳,获得10
9秒前
9秒前
WilsonT发布了新的文献求助20
9秒前
3-HP完成签到,获得积分10
9秒前
9秒前
kira发布了新的文献求助10
9秒前
大个应助丸子采纳,获得10
10秒前
EiRoco_0r完成签到,获得积分10
10秒前
wendinfgmei完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678