已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A combined diagnostic approach based on serum biomarkers for sarcopenia in older patients with hip fracture

肌萎缩 医学 胱抑素C 逻辑回归 内科学 髋部骨折 体质指数 肾功能 骨质疏松症
作者
Shengwu Yu,Li Chen,Yining Zhang,Peng Wu,Congcong Wu,Junzhe Lang,Yangbo Liu,Jiandong Yuan,Keke Jin,Lei Chen
出处
期刊:Australasian Journal on Ageing [Wiley]
卷期号:41 (4) 被引量:1
标识
DOI:10.1111/ajag.13064
摘要

Abstract Objective To develop prediction models for sarcopenia in older patients with hip fracture based on a specific set of serum biomarkers aimed at estimating appendicular skeletal muscle mass and diagnosing sarcopenia. Methods Older patients with hip fracture admitted to the First Affiliated Hospital of Wenzhou Medical University from January 2020 to June 2021 were recruited, screened for sarcopenia and tested for peripheral blood levels of specific serum biomarkers preoperatively. Participants were randomly divided into a training set and test set. Common factors were extracted from selected biomarkers through factor analysis, and regression models were established in the training set and verified in the test set. Results A total of 212 patients were enrolled, and the prevalence of sarcopenia was 22.8% in men and 19.5% in women. Significant differences in cystatin C, estimated glomerular filtration rate based on cystatin C, sarcopenia index, new sarcopenia index, haemoglobin and albumin were observed between patients with and without sarcopenia. Two regression models were developed in the training set. The validation of the test set confirmed that the linear regression model showed good consistency in predicting appendicular skeletal muscle mass index, while the logistic regression model showed high accuracy in predicting sarcopenia. Conclusions Both prediction models exhibited potential clinical application value for estimating appendicular skeletal muscle mass and predicting sarcopenia in older patients with hip fracture, providing new insights into the serological diagnosis of sarcopenia.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周周发布了新的文献求助10
刚刚
上官若男应助峤峤采纳,获得10
3秒前
ora4ks发布了新的文献求助30
5秒前
ckyyds完成签到 ,获得积分10
6秒前
lfchen完成签到,获得积分10
8秒前
椿萱并茂完成签到,获得积分10
10秒前
dyyisash完成签到 ,获得积分10
11秒前
13秒前
Metx完成签到 ,获得积分10
13秒前
孤巷的猫完成签到,获得积分10
14秒前
15秒前
jxz完成签到,获得积分10
15秒前
hellokitty完成签到,获得积分10
16秒前
卡卡东完成签到 ,获得积分10
16秒前
冬雾完成签到 ,获得积分10
18秒前
jxz发布了新的文献求助30
19秒前
sunphor完成签到 ,获得积分10
21秒前
彭于晏应助七yy采纳,获得10
22秒前
26秒前
29秒前
琳666发布了新的文献求助10
32秒前
干净的翠琴完成签到 ,获得积分10
32秒前
wonder123发布了新的文献求助20
34秒前
36秒前
Chocolat_Chaud完成签到,获得积分10
36秒前
小酥饼完成签到,获得积分10
36秒前
37秒前
JacksonM完成签到,获得积分10
38秒前
wonder123完成签到,获得积分10
39秒前
ZhaohuaXie应助读书的时候采纳,获得10
39秒前
sss完成签到 ,获得积分10
40秒前
峡星牙发布了新的文献求助10
41秒前
ZhaohuaXie应助琳666采纳,获得10
42秒前
默默襄完成签到 ,获得积分10
47秒前
49秒前
52秒前
鳗鱼鞋垫发布了新的文献求助10
53秒前
Li应助朱志伟采纳,获得10
54秒前
alanbike完成签到,获得积分10
55秒前
哆啦的空间站应助峡星牙采纳,获得10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
The Red Peril Explained: Every Man, Woman & Child Affected 400
The Social Work Ethics Casebook(2nd,Frederic G. Reamer) 400
Numerical Linear Algebra and Optimization 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5018676
求助须知:如何正确求助?哪些是违规求助? 4257895
关于积分的说明 13270315
捐赠科研通 4062539
什么是DOI,文献DOI怎么找? 2222054
邀请新用户注册赠送积分活动 1231142
关于科研通互助平台的介绍 1153977