生物传感器
检出限
纳米技术
脱氧核酶
材料科学
纳米颗粒
胶体金
DNA
自愈水凝胶
化学
色谱法
高分子化学
生物化学
作者
Chang Liu,Siyu Gou,Yanhui Bi,Qi Gao,Juanjuan Sun,Shanjin Hu,Weiwei Guo
标识
DOI:10.1016/j.bios.2022.114290
摘要
A portable, cost-effective and storable DNA-gold nanoparticle (AuNP) hybrid hydrogel film based biosensing system was developed, with AuNPs serving as both the crosslinking units of the film and the signaling units. Using a layer-by-layer assembly method, hydrogel film composed of three-dimensional hydrophilic network of densely packed AuNPs interconnected by responsive DNA structures was constructed onto a glass slide. By programming the sequence of DNA structures, target-responsive hybrid films were constructed. As a proof of concept, the sequence of a substrate DNA which can be identified and cleaved by Pb2+-dependent DNAzyme was encoded to construct Pb2+-responsive DNA-AuNP hybrid hydrogel film. The high-density packing of AuNPs as signal substances significantly improved the sensitivity of the ultrathin film biosensing system while reduced the cost of expensive DNA materials. A hydrogel film composed of 10 layers of assembled DNA-AuNP structures generated sufficient visual colorimetric signals for Pb2+ detection, with a detection limit of 2.6 nM. By introducing UO22+-dependent DNAzyme, the system could be further applied in the sensitive and selective detection of UO22+, with a detection limit of 10.3 nM. Compared with bulk-sized DNA hydrogel biosensing systems, the DNA-AuNP hydrogel film biosensing system exhibited faster response thanks to the sub-micrometer ultrathin film structures. Moreover, the protection of fragile non-covalently crosslinked DNA films with solid slides also facilitated the portable application and long-term storage of the resulting biosensing system, with 95% of the response signal retained after three months of storage. The DNA-AuNPs hydrogel film biosensing system is highly promising for future rapid on-site detection applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI