已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Distributed Task Scheduling in Serverless Edge Computing Networks for the Internet of Things: A Learning Approach

计算机科学 分布式计算 调度(生产过程) 供应 边缘计算 云计算 计算机网络 作业车间调度 数学优化 数学 布线(电子设计自动化) 操作系统
作者
Qinqin Tang,Renchao Xie,F. Richard Yu,Tianjiao Chen,Ran Zhang,Tao Huang,Yunjie Liu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (20): 19634-19648 被引量:54
标识
DOI:10.1109/jiot.2022.3167417
摘要

By delegating the infrastructure management, such as provisioning or scaling to third-party providers, serverless edge computing has recently been widely adopted in several applications, especially Internet of Things (IoT) applications. Task scheduling is a critical issue in serverless edge computing as it significantly impacts the quality of user experience. In contrast to the centralized scheduling in the cloud center, serverless edge task scheduling is more challenging due to the heterogeneous and resource-constrained nature of edge resources. This article aims to study the distributed task scheduling for the IoT in serverless edge computing networks, in which heterogeneous serverless edge computing nodes are rational individuals with interests to optimize their own scheduling utility while the nodes only have access to local observations. The task scheduling competition process is formulated as a partially observable stochastic game (POSG) to enable serverless edge computing nodes to noncooperatively schedule tasks and allocate computing resources depending on their locally observed system state, which takes into account the associated task generation state, data queue state, communication channel state, and previous computing resource allocation state. To solve the proposed POSG and deal with the partial observability, a multiagent task scheduling algorithm based on the dueling double deep recurrent $Q$ -network (D3RQN) method is developed to approximate the optimal task scheduling and resource allocation solution. Finally, extensive simulation experiments are conducted to validate the effectiveness and superiority of the proposed scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
1秒前
小马甲应助科研通管家采纳,获得10
1秒前
FIN应助科研通管家采纳,获得20
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
1秒前
韦老虎完成签到,获得积分10
5秒前
小L完成签到 ,获得积分10
6秒前
林林林完成签到,获得积分10
8秒前
9秒前
Ava应助max采纳,获得10
10秒前
cherish发布了新的文献求助10
12秒前
元欣完成签到 ,获得积分10
17秒前
zlx完成签到 ,获得积分10
18秒前
cherish完成签到,获得积分10
22秒前
miemie发布了新的文献求助10
24秒前
syslby完成签到,获得积分10
24秒前
柔弱熊猫完成签到 ,获得积分10
25秒前
研友_VZG7GZ应助小杨采纳,获得10
27秒前
没有色彩的多崎作完成签到,获得积分20
29秒前
30秒前
kkkim完成签到 ,获得积分10
32秒前
一番完成签到,获得积分10
34秒前
李健的小迷弟应助cl采纳,获得10
35秒前
安然完成签到 ,获得积分10
37秒前
43秒前
碳碳焢烃发布了新的文献求助10
44秒前
Z可完成签到 ,获得积分10
45秒前
48秒前
发电的皮卡丘完成签到,获得积分10
50秒前
yi完成签到,获得积分10
54秒前
56秒前
今后应助绍成采纳,获得10
56秒前
小巧念露完成签到,获得积分10
58秒前
顺利白柏完成签到 ,获得积分10
59秒前
1分钟前
okt111完成签到,获得积分10
1分钟前
1分钟前
黄毅发布了新的文献求助10
1分钟前
敏感夏烟完成签到 ,获得积分10
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959957
求助须知:如何正确求助?哪些是违规求助? 3506202
关于积分的说明 11128332
捐赠科研通 3238193
什么是DOI,文献DOI怎么找? 1789549
邀请新用户注册赠送积分活动 871810
科研通“疑难数据库(出版商)”最低求助积分说明 803042