Distributed Task Scheduling in Serverless Edge Computing Networks for the Internet of Things: A Learning Approach

计算机科学 分布式计算 调度(生产过程) 供应 边缘计算 云计算 计算机网络 作业车间调度 数学优化 数学 布线(电子设计自动化) 操作系统
作者
Qinqin Tang,Renchao Xie,F. Richard Yu,Tianjiao Chen,Ran Zhang,Tao Huang,Yunjie Liu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:9 (20): 19634-19648 被引量:54
标识
DOI:10.1109/jiot.2022.3167417
摘要

By delegating the infrastructure management, such as provisioning or scaling to third-party providers, serverless edge computing has recently been widely adopted in several applications, especially Internet of Things (IoT) applications. Task scheduling is a critical issue in serverless edge computing as it significantly impacts the quality of user experience. In contrast to the centralized scheduling in the cloud center, serverless edge task scheduling is more challenging due to the heterogeneous and resource-constrained nature of edge resources. This article aims to study the distributed task scheduling for the IoT in serverless edge computing networks, in which heterogeneous serverless edge computing nodes are rational individuals with interests to optimize their own scheduling utility while the nodes only have access to local observations. The task scheduling competition process is formulated as a partially observable stochastic game (POSG) to enable serverless edge computing nodes to noncooperatively schedule tasks and allocate computing resources depending on their locally observed system state, which takes into account the associated task generation state, data queue state, communication channel state, and previous computing resource allocation state. To solve the proposed POSG and deal with the partial observability, a multiagent task scheduling algorithm based on the dueling double deep recurrent $Q$ -network (D3RQN) method is developed to approximate the optimal task scheduling and resource allocation solution. Finally, extensive simulation experiments are conducted to validate the effectiveness and superiority of the proposed scheme.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
元谷雪发布了新的文献求助10
刚刚
zakai完成签到,获得积分10
刚刚
2秒前
Shawn完成签到,获得积分10
2秒前
3秒前
所所应助孙漪采纳,获得10
3秒前
爆米花应助研友_nxGyxL采纳,获得30
3秒前
Owen应助呆呆要努力采纳,获得10
3秒前
4秒前
zyme发布了新的文献求助10
4秒前
Jasper应助读书的时候采纳,获得10
5秒前
5秒前
vv发布了新的文献求助10
6秒前
hdy331完成签到,获得积分0
6秒前
tengfei完成签到,获得积分10
7秒前
lzq1116发布了新的文献求助10
8秒前
搜集达人应助代秋采纳,获得10
8秒前
黑熊完成签到,获得积分10
8秒前
8秒前
9秒前
无辜紫菜发布了新的文献求助10
9秒前
华仔应助薛变霞采纳,获得10
10秒前
哈尼完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
Fushanyu完成签到 ,获得积分10
10秒前
11秒前
you完成签到,获得积分10
12秒前
12秒前
ZHAO发布了新的文献求助10
13秒前
彭于晏应助机智笑南采纳,获得10
14秒前
tt发布了新的文献求助10
14秒前
风趣的觅山完成签到 ,获得积分10
14秒前
明亮棉花糖完成签到 ,获得积分10
15秒前
pzh发布了新的文献求助10
15秒前
卷毛发布了新的文献求助10
15秒前
充电宝应助谦让的傲芙采纳,获得10
16秒前
CodeCraft应助于66采纳,获得10
17秒前
tuyfytjt发布了新的文献求助10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5693788
求助须知:如何正确求助?哪些是违规求助? 5094331
关于积分的说明 15212383
捐赠科研通 4850595
什么是DOI,文献DOI怎么找? 2601854
邀请新用户注册赠送积分活动 1553652
关于科研通互助平台的介绍 1511661