Electrospinning porcine decellularized nerve matrix scaffold for peripheral nerve regeneration

去细胞化 再生(生物学) 坐骨神经 神经导管 脚手架 静电纺丝 生物医学工程 神经纤维 周围神经 神经外膜修复 组织工程 解剖 体内 髓鞘 基质(化学分析) 细胞外基质 化学 材料科学 医学 细胞生物学 中枢神经系统 复合材料 生物 聚合物 内科学 生物技术 生物化学
作者
Yan Kong,Jiawei Xu,Qi Han,Tiantian Zheng,Linliang Wu,Guicai Li,Yumin Yang
出处
期刊:International Journal of Biological Macromolecules [Elsevier]
卷期号:209: 1867-1881 被引量:19
标识
DOI:10.1016/j.ijbiomac.2022.04.161
摘要

The composition and spatial structure of bioscaffold materials are essential for constructing tissue regeneration microenvironments. In this study, by using an electrospinning technique without any other additives, we successfully developed pure porcine decellularized nerve matrix (xDNME) conduits. The developed xDNME was composed of an obvious decellularized matrix fiber structure and effectively retained the natural components in the decellularized matrix of the nerve tissue. The xDNME conduit exhibited superior biocompatibility and the ability to overcome inter-species barriers. In vivo, after 12 weeks of implantation, xDNME significantly promoted the regeneration of rat sciatic nerve. The regenerated nerve fibers completely connected the two ends of the nerve defect, which were about 8 mm apart. The xDNME and xDNME-OPC groups showed myelin structures in the regenerated nerve fibers. In the xDNME group, the average thickness of the regenerated myelin sheath was 0.640 ± 0.013 μm, which was almost comparable to that in the autologous nerve group (0.646 ± 0.017 μm). Electrophysiological experiments revealed that both of the regenerated nerve fibers in the xDNME and xDNME-OPC groups had excellent abilities to transmit electrical signals. Respectively, the average conduction velocities of xDNME and xDNME-OPC were 8.86 ± 3.57 m/s and 6.99 ± 3.43 m/s. In conclusion, the xDNME conduits have a great potential for clinical treatment of peripheral nerve injuries, which may clinically transform peripheral nerve related regenerative medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123发布了新的文献求助10
1秒前
Mtoc完成签到 ,获得积分10
1秒前
劣根完成签到,获得积分10
3秒前
3秒前
科目三应助kk采纳,获得10
4秒前
jiose驳回了Akim应助
5秒前
张弘完成签到,获得积分10
5秒前
6秒前
啦啦啦发布了新的文献求助10
7秒前
8秒前
10秒前
12秒前
秋天爱吃板栗应助求助采纳,获得50
12秒前
所所应助qishi采纳,获得10
13秒前
我是老大应助naturehome采纳,获得10
15秒前
15秒前
Ly发布了新的文献求助10
15秒前
大个应助张小龙采纳,获得10
16秒前
猫南北完成签到,获得积分10
17秒前
17秒前
17秒前
17秒前
西屿发布了新的文献求助10
19秒前
19秒前
海藻发布了新的文献求助10
19秒前
dodo完成签到 ,获得积分10
20秒前
硕shuo完成签到 ,获得积分10
21秒前
Jasper应助andy-law采纳,获得10
21秒前
Hello应助Sievi采纳,获得10
21秒前
carryxxx关注了科研通微信公众号
21秒前
22秒前
22秒前
聪明天佑完成签到 ,获得积分10
22秒前
TheForest发布了新的文献求助20
24秒前
24秒前
Simon发布了新的文献求助10
24秒前
24秒前
naturehome发布了新的文献求助10
26秒前
Akim应助杰瑞采纳,获得10
26秒前
26秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Gerard de Lairesse : an artist between stage and studio 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3076461
求助须知:如何正确求助?哪些是违规求助? 2729295
关于积分的说明 7508443
捐赠科研通 2377577
什么是DOI,文献DOI怎么找? 1260686
科研通“疑难数据库(出版商)”最低求助积分说明 611122
版权声明 597203