Bionic Optical Leaf for Photoreduction of CO2 from Noble Metal Atom Mediated Graphene Nanobubble Arrays

石墨烯 材料科学 贵金属 掺杂剂 催化作用 光催化 吸收(声学) 带隙 氧化物 纳米技术 光化学 兴奋剂 金属 化学工程 光电子学 化学 复合材料 有机化学 冶金 工程类
作者
Shuailong Guo,Chunpeng Song,Feng Liu,Debin Zeng,Hao Yuan,Xingtao Liu,Haoqing Jiang,Gary J. Cheng
出处
期刊:ACS Nano [American Chemical Society]
卷期号:16 (2): 1909-1918 被引量:20
标识
DOI:10.1021/acsnano.1c04597
摘要

The reduction of CO2 to useful chemicals by solar irradiation has been of great interest in recent years to tackle the greenhouse effect. Compared with inorganic metal oxide particles, carbonaceous materials, such as graphene, are excellent in light absorption; however, they lack in activity and selectivity because of the challenge to manipulate the band gap and optimize the electron–hole separation, which drives the photoreduction process. In this work, inspired by the delicate natural plant leaf structure, we fabricated orderly stacked graphene nanobubble arrays with nitrogen dopant for the coordination of noble metal atoms to mimic the natural photoreduction process in plant leaves. This graphene metamaterial not only mimics the optical structure of leaf cells, which scatter and absorb light efficiently, but also drives the CO2 reduction via nitrogen coordinated metal atoms as the chlorophyll does in plants. Our characterizations show that the band gap of nitrogen-doped graphene could be precisely tailored via substitution with different noble metal atoms on the doped site. The noble atoms coordinated on the doped site of graphene metamaterial not only enlarge the light absorption volume but also maximize the utilization of noble metals. The bionic optical leaf metamaterial coordinated with Au atoms exhibits high CO productivity up to 11.14 mmol gcat–1 h–1 and selectivity to 95%, standing as one of the best catalysts among the carbonaceous and metal-based catalysts reported to date. This catalyst also maintained a high performance at low temperatures, manifesting potential applications of this bionic catalyst at polar regions to reduce greenhouse gases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
晴天完成签到,获得积分20
刚刚
ntxiaohu完成签到,获得积分10
刚刚
1秒前
HEIKU应助Krapanda采纳,获得10
1秒前
彭于晏应助Boooooo采纳,获得10
1秒前
1秒前
阳光he完成签到,获得积分10
1秒前
无籽莓完成签到,获得积分10
1秒前
次我完成签到,获得积分10
2秒前
领导范儿应助lili采纳,获得50
2秒前
犹豫机器猫完成签到,获得积分10
2秒前
仁爱秋白发布了新的文献求助50
2秒前
Maxin发布了新的文献求助10
2秒前
苹果巧蕊发布了新的文献求助30
2秒前
3秒前
MQ&FF发布了新的文献求助10
3秒前
3秒前
炸鸡完成签到 ,获得积分10
4秒前
simu关注了科研通微信公众号
4秒前
4秒前
5秒前
5秒前
龙猪发布了新的文献求助10
5秒前
sda发布了新的文献求助10
6秒前
Micheal完成签到,获得积分10
7秒前
xuuuuu完成签到,获得积分10
7秒前
7秒前
7秒前
飘逸DH关注了科研通微信公众号
7秒前
7秒前
无花果应助乐观德地采纳,获得10
7秒前
Nathaniel发布了新的文献求助10
8秒前
8秒前
8秒前
可爱安筠发布了新的文献求助10
8秒前
雨天有伞完成签到,获得积分10
8秒前
8秒前
李健应助LRRAM_809采纳,获得10
9秒前
张金洋完成签到,获得积分10
9秒前
Jasper应助垚祎采纳,获得10
9秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3295205
求助须知:如何正确求助?哪些是违规求助? 2931190
关于积分的说明 8450981
捐赠科研通 2603766
什么是DOI,文献DOI怎么找? 1421387
科研通“疑难数据库(出版商)”最低求助积分说明 660854
邀请新用户注册赠送积分活动 643802