灵敏度(控制系统)
计算机科学
差异(会计)
航程(航空)
平滑的
蒙特卡罗方法
变量(数学)
计量经济学
概率逻辑
回归分析
分类
机器学习
人工智能
统计
算法
数学
工程类
数学分析
会计
电子工程
业务
计算机视觉
航空航天工程
作者
Bertrand Iooss,Paul Lemaître
出处
期刊:Operations research, computer science. Interface series
日期:2015-01-01
卷期号:: 101-122
被引量:387
标识
DOI:10.1007/978-1-4899-7547-8_5
摘要
This chapter makes a review, in a complete methodological framework, of various global sensitivity analysis methods of model output. Numerous statistical and probabilistic tools (regression, smoothing, tests, statistical learning, Monte Carlo, \ldots) aim at determining the model input variables which mostly contribute to an interest quantity depending on model output. This quantity can be for instance the variance of an output variable. Three kinds of methods are distinguished: the screening (coarse sorting of the most influential inputs among a large number), the measures of importance (quantitative sensitivity indices) and the deep exploration of the model behaviour (measuring the effects of inputs on their all variation range). A progressive application methodology is illustrated on a scholar application. A synthesis is given to place every method according to several axes, mainly the cost in number of model evaluations, the model complexity and the nature of brought information.
科研通智能强力驱动
Strongly Powered by AbleSci AI