已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integrating safety into the fundamental relations of freeway traffic flows: A conflict-based safety assessment framework

更安全的 概率逻辑 撞车 弹道 交通冲突 计算机科学 流量(计算机网络) 事件(粒子物理) 光学(聚焦) 度量(数据仓库) 交通模拟 毒物控制 运输工程 工程类 数据挖掘 交通拥挤 计算机安全 人工智能 微模拟 浮动车数据 物理 光学 环境卫生 程序设计语言 医学 量子力学 天文
作者
Saeed Mohammadian,Linda Ng Boyle,Zuduo Zheng,Ashish Bhaskar
出处
期刊:Analytic Methods in Accident Research [Elsevier]
卷期号:32: 100187-100187 被引量:24
标识
DOI:10.1016/j.amar.2021.100187
摘要

Numerous statistical and data-driven modeling frameworks have estimated rear-end crashes and crash-prone events from macroscopic traffic states which are at the heart of traffic flow modelling and control. However, existing frameworks focus on critical events and exclude a vast majority of safer interactions, which are essential information with respect to identifying the trade-offs between congestion management and rear-end crash prevention. This study proposes a flexible conflict-based framework to extract safety information from freeway macroscopic traffic state variables (i.e., speed and density) by utilizing the information from all underlying car-following interactions. Time spent in conflict (TSC) is introduced as the total time spent by all vehicles in rear-end conflicts based on a given conflict measure and a threshold to be determined flexibly. Using the NGSIM vehicle trajectory dataset, we show that the proportion of stopping distance (PSD) is more desirable than several event-based conflict measures (e.g., time to collision) for describing TSC based on macroscopic state variables. Besides, it is shown that PSD provides explicit safety information about the entire travel time for each macroscopic state because it applies to all car-following interactions. This paper proposes a hybrid methodological framework combining probabilistic and machine learning models to develop the relationships between safety and macroscopic state variables within a flexible conflict-based safety assessment framework. At first, probabilistic and Machine learning models are separately developed to estimate PSD-based TSC using only macroscopic stte variables. Each approach is evaluated comprehensively against empirical observations using the NGSIM vehicle trajectory dataset. While the machine learning approach has better predictive accuracy for a fixed rear-end conflict threshold (i.e., PSDcr), the probabilistic approach has a better explaining capability and captures TSC using flexible conflict thresholds. Utilizing the advantages of these two approaches, the proposed hybrid framework satisfactorily predicts TSC corresponding to PSD
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
momi发布了新的文献求助10
2秒前
sci来完成签到,获得积分10
2秒前
神启完成签到 ,获得积分10
3秒前
田様应助momo采纳,获得10
5秒前
6秒前
9秒前
Berserker发布了新的文献求助10
9秒前
lauchan54发布了新的文献求助10
11秒前
杳鸢应助活力的念柏采纳,获得30
11秒前
起风了发布了新的文献求助10
13秒前
14秒前
小王完成签到 ,获得积分10
14秒前
15秒前
无情香烟完成签到,获得积分10
16秒前
16秒前
16秒前
科研通AI2S应助雪茶采纳,获得10
18秒前
听风随影完成签到 ,获得积分10
19秒前
20秒前
momi发布了新的文献求助10
20秒前
马丽发布了新的文献求助10
20秒前
21秒前
无情香烟发布了新的文献求助30
23秒前
春天在这李完成签到,获得积分10
23秒前
传奇3应助隐形衬衫采纳,获得10
24秒前
模糊中正应助牛牛采纳,获得50
24秒前
maox1aoxin应助牛牛采纳,获得30
24秒前
VDC应助牛牛采纳,获得30
24秒前
ljg发布了新的文献求助10
24秒前
深情安青应助马丽采纳,获得10
24秒前
coesius关注了科研通微信公众号
25秒前
subat完成签到 ,获得积分10
26秒前
momo发布了新的文献求助10
26秒前
meethaha完成签到,获得积分10
27秒前
玖梦恨别离完成签到 ,获得积分10
29秒前
priss111应助雪茶采纳,获得30
29秒前
Gryff发布了新的文献求助10
29秒前
31秒前
33秒前
37秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3261321
求助须知:如何正确求助?哪些是违规求助? 2902161
关于积分的说明 8319043
捐赠科研通 2571932
什么是DOI,文献DOI怎么找? 1397362
科研通“疑难数据库(出版商)”最低求助积分说明 653708
邀请新用户注册赠送积分活动 632216