Integrating safety into the fundamental relations of freeway traffic flows: A conflict-based safety assessment framework

更安全的 概率逻辑 撞车 弹道 交通冲突 计算机科学 流量(计算机网络) 事件(粒子物理) 光学(聚焦) 度量(数据仓库) 交通模拟 毒物控制 运输工程 工程类 数据挖掘 交通拥挤 计算机安全 人工智能 微模拟 浮动车数据 物理 光学 环境卫生 程序设计语言 医学 量子力学 天文
作者
Saeed Mohammadian,Linda Ng Boyle,Zuduo Zheng,Ashish Bhaskar
出处
期刊:Analytic Methods in Accident Research [Elsevier BV]
卷期号:32: 100187-100187 被引量:24
标识
DOI:10.1016/j.amar.2021.100187
摘要

Numerous statistical and data-driven modeling frameworks have estimated rear-end crashes and crash-prone events from macroscopic traffic states which are at the heart of traffic flow modelling and control. However, existing frameworks focus on critical events and exclude a vast majority of safer interactions, which are essential information with respect to identifying the trade-offs between congestion management and rear-end crash prevention. This study proposes a flexible conflict-based framework to extract safety information from freeway macroscopic traffic state variables (i.e., speed and density) by utilizing the information from all underlying car-following interactions. Time spent in conflict (TSC) is introduced as the total time spent by all vehicles in rear-end conflicts based on a given conflict measure and a threshold to be determined flexibly. Using the NGSIM vehicle trajectory dataset, we show that the proportion of stopping distance (PSD) is more desirable than several event-based conflict measures (e.g., time to collision) for describing TSC based on macroscopic state variables. Besides, it is shown that PSD provides explicit safety information about the entire travel time for each macroscopic state because it applies to all car-following interactions. This paper proposes a hybrid methodological framework combining probabilistic and machine learning models to develop the relationships between safety and macroscopic state variables within a flexible conflict-based safety assessment framework. At first, probabilistic and Machine learning models are separately developed to estimate PSD-based TSC using only macroscopic stte variables. Each approach is evaluated comprehensively against empirical observations using the NGSIM vehicle trajectory dataset. While the machine learning approach has better predictive accuracy for a fixed rear-end conflict threshold (i.e., PSDcr), the probabilistic approach has a better explaining capability and captures TSC using flexible conflict thresholds. Utilizing the advantages of these two approaches, the proposed hybrid framework satisfactorily predicts TSC corresponding to PSD
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助研友_Z7QedL采纳,获得10
1秒前
1秒前
666发布了新的文献求助10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
1秒前
斯文败类应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
思源应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
爱笑的若雁完成签到,获得积分10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
Hiccupsssss完成签到,获得积分10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
3秒前
田田应助科研通管家采纳,获得10
3秒前
ding应助科研通管家采纳,获得10
3秒前
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
chenqiumu应助zzzshy采纳,获得30
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
852应助高志博采纳,获得10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
5秒前
5秒前
深情安青应助Later采纳,获得10
6秒前
hxpxp完成签到,获得积分10
6秒前
dd发布了新的文献求助20
6秒前
7秒前
Bazinga完成签到,获得积分10
7秒前
浮游应助呀哦呀采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5330356
求助须知:如何正确求助?哪些是违规求助? 4469805
关于积分的说明 13910955
捐赠科研通 4363153
什么是DOI,文献DOI怎么找? 2396686
邀请新用户注册赠送积分活动 1390108
关于科研通互助平台的介绍 1360884