Integrating safety into the fundamental relations of freeway traffic flows: A conflict-based safety assessment framework

更安全的 概率逻辑 撞车 弹道 交通冲突 计算机科学 流量(计算机网络) 事件(粒子物理) 光学(聚焦) 度量(数据仓库) 交通模拟 毒物控制 运输工程 工程类 数据挖掘 交通拥挤 计算机安全 人工智能 微模拟 浮动车数据 物理 光学 环境卫生 程序设计语言 医学 量子力学 天文
作者
Saeed Mohammadian,Linda Ng Boyle,Zuduo Zheng,Ashish Bhaskar
出处
期刊:Analytic Methods in Accident Research [Elsevier BV]
卷期号:32: 100187-100187 被引量:24
标识
DOI:10.1016/j.amar.2021.100187
摘要

Numerous statistical and data-driven modeling frameworks have estimated rear-end crashes and crash-prone events from macroscopic traffic states which are at the heart of traffic flow modelling and control. However, existing frameworks focus on critical events and exclude a vast majority of safer interactions, which are essential information with respect to identifying the trade-offs between congestion management and rear-end crash prevention. This study proposes a flexible conflict-based framework to extract safety information from freeway macroscopic traffic state variables (i.e., speed and density) by utilizing the information from all underlying car-following interactions. Time spent in conflict (TSC) is introduced as the total time spent by all vehicles in rear-end conflicts based on a given conflict measure and a threshold to be determined flexibly. Using the NGSIM vehicle trajectory dataset, we show that the proportion of stopping distance (PSD) is more desirable than several event-based conflict measures (e.g., time to collision) for describing TSC based on macroscopic state variables. Besides, it is shown that PSD provides explicit safety information about the entire travel time for each macroscopic state because it applies to all car-following interactions. This paper proposes a hybrid methodological framework combining probabilistic and machine learning models to develop the relationships between safety and macroscopic state variables within a flexible conflict-based safety assessment framework. At first, probabilistic and Machine learning models are separately developed to estimate PSD-based TSC using only macroscopic stte variables. Each approach is evaluated comprehensively against empirical observations using the NGSIM vehicle trajectory dataset. While the machine learning approach has better predictive accuracy for a fixed rear-end conflict threshold (i.e., PSDcr), the probabilistic approach has a better explaining capability and captures TSC using flexible conflict thresholds. Utilizing the advantages of these two approaches, the proposed hybrid framework satisfactorily predicts TSC corresponding to PSD
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陶醉晓凡发布了新的文献求助10
1秒前
Dada完成签到,获得积分10
1秒前
McQ发布了新的文献求助10
1秒前
我是老大应助tonight采纳,获得10
2秒前
负责月光完成签到,获得积分10
3秒前
千空发布了新的文献求助10
3秒前
3秒前
5秒前
6秒前
Mine发布了新的文献求助10
6秒前
WL发布了新的文献求助10
6秒前
7秒前
米九完成签到,获得积分10
7秒前
9秒前
9秒前
10秒前
10秒前
充电宝应助linmo采纳,获得10
10秒前
10秒前
10秒前
abcc1234发布了新的文献求助10
11秒前
11秒前
Kenzonvay发布了新的文献求助10
13秒前
许宗蓥完成签到,获得积分10
13秒前
chengzi发布了新的文献求助10
13秒前
HOXXXiii完成签到,获得积分10
13秒前
tonight发布了新的文献求助10
13秒前
Jenaloe发布了新的文献求助10
14秒前
赵佳璐发布了新的文献求助10
14秒前
SciGPT应助ihtw采纳,获得10
15秒前
16秒前
16秒前
17秒前
17秒前
19秒前
FashionBoy应助ln采纳,获得10
19秒前
20秒前
Mobius发布了新的文献求助10
21秒前
stream发布了新的文献求助10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951173
求助须知:如何正确求助?哪些是违规求助? 3496521
关于积分的说明 11082942
捐赠科研通 3226974
什么是DOI,文献DOI怎么找? 1784145
邀请新用户注册赠送积分活动 868219
科研通“疑难数据库(出版商)”最低求助积分说明 801089