已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Sequential concrete crack segmentation using deep fully convolutional neural networks and data fusion

卷积神经网络 计算机科学 人工智能 分割 深度学习 编码器 人工神经网络 模式识别(心理学) 图像分割 计算机视觉 操作系统
作者
Maziar Jamshidi,Mamdouh El‐Badry,Chaobo Zhang
标识
DOI:10.1117/12.2592243
摘要

Algorithms that interpret images to locate surface defects, such as cracks, play a key role in an automated inspection system. That is the reason the success of convolutional neural networks (CNNs) in image object detection persuaded researchers to apply deep CNNs for visual surface crack detection. Among various deep learning architectures, encoder decoder architectures with fully convolutional networks (FCNs) are powerful tools for automatically segmenting inspection images and detecting crack maps. In this study the U-Net architecture, as a particular FCN, is trained using the available concrete crack datasets. The trained network is then employed to detect crack maps in a sequence of images taken from a concrete beam-column specimen under a cyclic load test. To enhance performance of the crack segmentation, instead of treating each image in the sequence independently, the detection results of the next stages of the experiment are used to determine the crack map at the current stage. By leveraging the fact that cracks propagate sequentially, a data fusion technique is proposed that updates crack maps by considering the outcome of the next steps. To realize this method, reference points on images are utilized to estimate the deformation of the structural members. The deformation information is then used to project the previously detected crack maps onto the current image. This makes it possible to aggregate current and future detections and achieve higher accuracy. The framework laid out in this study provides tools to filter out false positives and recover missed detections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菜鸟队长完成签到 ,获得积分10
1秒前
1秒前
鳗鱼涵易发布了新的文献求助10
1秒前
2秒前
aaaabc完成签到 ,获得积分10
2秒前
jf完成签到 ,获得积分10
3秒前
好哇发布了新的文献求助10
3秒前
charles完成签到,获得积分20
4秒前
QQQQQQQQQ完成签到 ,获得积分10
5秒前
5秒前
张三关注了科研通微信公众号
6秒前
lmy发布了新的文献求助10
6秒前
6秒前
田様应助小咩采纳,获得10
6秒前
舒适的金针菇应助清风采纳,获得10
7秒前
SciGPT应助超人强采纳,获得10
7秒前
令狐冲发布了新的文献求助10
8秒前
归尘发布了新的文献求助10
8秒前
10秒前
11秒前
13秒前
QQQQQQQQQ关注了科研通微信公众号
13秒前
14秒前
张三发布了新的文献求助10
16秒前
17秒前
17秒前
zhangHR完成签到 ,获得积分20
18秒前
18秒前
Ico发布了新的文献求助10
18秒前
cyw关注了科研通微信公众号
19秒前
19秒前
21秒前
糊涂完成签到 ,获得积分10
22秒前
23秒前
IV完成签到,获得积分10
23秒前
duang发布了新的文献求助10
24秒前
24秒前
受伤白猫发布了新的文献求助10
24秒前
隐形曼青应助清风采纳,获得10
25秒前
浮游应助AIR采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5462799
求助须知:如何正确求助?哪些是违规求助? 4567554
关于积分的说明 14310837
捐赠科研通 4493410
什么是DOI,文献DOI怎么找? 2461607
邀请新用户注册赠送积分活动 1450711
关于科研通互助平台的介绍 1425919