Sequential concrete crack segmentation using deep fully convolutional neural networks and data fusion

卷积神经网络 计算机科学 人工智能 分割 深度学习 编码器 人工神经网络 模式识别(心理学) 图像分割 计算机视觉 操作系统
作者
Maziar Jamshidi,Mamdouh El‐Badry,Chaobo Zhang
标识
DOI:10.1117/12.2592243
摘要

Algorithms that interpret images to locate surface defects, such as cracks, play a key role in an automated inspection system. That is the reason the success of convolutional neural networks (CNNs) in image object detection persuaded researchers to apply deep CNNs for visual surface crack detection. Among various deep learning architectures, encoder decoder architectures with fully convolutional networks (FCNs) are powerful tools for automatically segmenting inspection images and detecting crack maps. In this study the U-Net architecture, as a particular FCN, is trained using the available concrete crack datasets. The trained network is then employed to detect crack maps in a sequence of images taken from a concrete beam-column specimen under a cyclic load test. To enhance performance of the crack segmentation, instead of treating each image in the sequence independently, the detection results of the next stages of the experiment are used to determine the crack map at the current stage. By leveraging the fact that cracks propagate sequentially, a data fusion technique is proposed that updates crack maps by considering the outcome of the next steps. To realize this method, reference points on images are utilized to estimate the deformation of the structural members. The deformation information is then used to project the previously detected crack maps onto the current image. This makes it possible to aggregate current and future detections and achieve higher accuracy. The framework laid out in this study provides tools to filter out false positives and recover missed detections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
菠萝吹雪发布了新的文献求助10
1秒前
ljact完成签到,获得积分10
2秒前
2秒前
ding应助优秀问丝采纳,获得10
2秒前
心驰天外完成签到,获得积分10
3秒前
牵猫散步的鱼完成签到,获得积分10
3秒前
李禹晗发布了新的文献求助10
3秒前
3秒前
yolo完成签到,获得积分10
4秒前
4秒前
小东西完成签到,获得积分10
4秒前
4秒前
天天快乐应助谦谦采纳,获得10
5秒前
田様应助陈M雯采纳,获得10
5秒前
want_top_journal完成签到,获得积分10
6秒前
欢呼南晴完成签到,获得积分10
6秒前
ztq完成签到 ,获得积分10
6秒前
jiejie完成签到,获得积分10
7秒前
秦风发布了新的文献求助10
7秒前
飞鸟吃鱼完成签到 ,获得积分10
7秒前
pluto应助leo采纳,获得10
7秒前
大方师发布了新的文献求助10
8秒前
小狗呼噜噜完成签到 ,获得积分10
9秒前
深情安青应助HJQ采纳,获得10
9秒前
fzdzc完成签到 ,获得积分10
9秒前
萌only发布了新的文献求助10
10秒前
莫愁发布了新的文献求助10
10秒前
枝头树上的布谷鸟完成签到,获得积分10
10秒前
10秒前
11秒前
XZZH完成签到,获得积分10
11秒前
12秒前
打打应助yanny采纳,获得10
12秒前
長乐完成签到 ,获得积分10
12秒前
欢呼凝冬完成签到 ,获得积分10
12秒前
CipherSage应助zzzzzz采纳,获得10
13秒前
13秒前
JamesPei应助刘宇采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410122
求助须知:如何正确求助?哪些是违规求助? 4527656
关于积分的说明 14112011
捐赠科研通 4442051
什么是DOI,文献DOI怎么找? 2437805
邀请新用户注册赠送积分活动 1429747
关于科研通互助平台的介绍 1407769