Sequential concrete crack segmentation using deep fully convolutional neural networks and data fusion

卷积神经网络 计算机科学 人工智能 分割 深度学习 编码器 人工神经网络 模式识别(心理学) 图像分割 计算机视觉 操作系统
作者
Maziar Jamshidi,Mamdouh El‐Badry,Chaobo Zhang
标识
DOI:10.1117/12.2592243
摘要

Algorithms that interpret images to locate surface defects, such as cracks, play a key role in an automated inspection system. That is the reason the success of convolutional neural networks (CNNs) in image object detection persuaded researchers to apply deep CNNs for visual surface crack detection. Among various deep learning architectures, encoder decoder architectures with fully convolutional networks (FCNs) are powerful tools for automatically segmenting inspection images and detecting crack maps. In this study the U-Net architecture, as a particular FCN, is trained using the available concrete crack datasets. The trained network is then employed to detect crack maps in a sequence of images taken from a concrete beam-column specimen under a cyclic load test. To enhance performance of the crack segmentation, instead of treating each image in the sequence independently, the detection results of the next stages of the experiment are used to determine the crack map at the current stage. By leveraging the fact that cracks propagate sequentially, a data fusion technique is proposed that updates crack maps by considering the outcome of the next steps. To realize this method, reference points on images are utilized to estimate the deformation of the structural members. The deformation information is then used to project the previously detected crack maps onto the current image. This makes it possible to aggregate current and future detections and achieve higher accuracy. The framework laid out in this study provides tools to filter out false positives and recover missed detections.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助guoguo采纳,获得10
1秒前
2秒前
精灵梦完成签到,获得积分10
2秒前
4秒前
Villanellel完成签到,获得积分10
5秒前
科研通AI6应助嘀嘀嘀采纳,获得30
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
wanhe发布了新的文献求助10
8秒前
赘婿应助霍则风采纳,获得10
8秒前
Lucas应助源缘采纳,获得10
8秒前
雪上一枝蒿完成签到,获得积分10
9秒前
9秒前
Hello应助柒玉染采纳,获得10
10秒前
小早完成签到,获得积分10
10秒前
zkk完成签到,获得积分10
12秒前
Hello应助李李采纳,获得10
12秒前
13秒前
羊里里梨发布了新的文献求助10
14秒前
董董发布了新的文献求助10
14秒前
ZhangChuwen发布了新的文献求助30
16秒前
科研通AI6应助wang采纳,获得10
16秒前
英姑应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
17秒前
浮游应助科研通管家采纳,获得10
17秒前
17秒前
田様应助科研通管家采纳,获得10
17秒前
Jasper应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
研友_VZG7GZ应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
共享精神应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
华仔应助科研通管家采纳,获得10
17秒前
JamesPei应助科研通管家采纳,获得10
17秒前
雨中小王应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
Sport, Social Media, and Digital Technology: Sociological Approaches 650
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5594252
求助须知:如何正确求助?哪些是违规求助? 4679915
关于积分的说明 14812161
捐赠科研通 4646417
什么是DOI,文献DOI怎么找? 2534795
邀请新用户注册赠送积分活动 1502804
关于科研通互助平台的介绍 1469490