Sequential concrete crack segmentation using deep fully convolutional neural networks and data fusion

卷积神经网络 计算机科学 人工智能 分割 深度学习 编码器 人工神经网络 模式识别(心理学) 图像分割 计算机视觉 操作系统
作者
Maziar Jamshidi,Mamdouh El‐Badry,Chaobo Zhang
标识
DOI:10.1117/12.2592243
摘要

Algorithms that interpret images to locate surface defects, such as cracks, play a key role in an automated inspection system. That is the reason the success of convolutional neural networks (CNNs) in image object detection persuaded researchers to apply deep CNNs for visual surface crack detection. Among various deep learning architectures, encoder decoder architectures with fully convolutional networks (FCNs) are powerful tools for automatically segmenting inspection images and detecting crack maps. In this study the U-Net architecture, as a particular FCN, is trained using the available concrete crack datasets. The trained network is then employed to detect crack maps in a sequence of images taken from a concrete beam-column specimen under a cyclic load test. To enhance performance of the crack segmentation, instead of treating each image in the sequence independently, the detection results of the next stages of the experiment are used to determine the crack map at the current stage. By leveraging the fact that cracks propagate sequentially, a data fusion technique is proposed that updates crack maps by considering the outcome of the next steps. To realize this method, reference points on images are utilized to estimate the deformation of the structural members. The deformation information is then used to project the previously detected crack maps onto the current image. This makes it possible to aggregate current and future detections and achieve higher accuracy. The framework laid out in this study provides tools to filter out false positives and recover missed detections.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yourself完成签到,获得积分10
2秒前
小爪冰凉应助科研通管家采纳,获得10
3秒前
小爪冰凉应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
李爱国应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得20
3秒前
小爪冰凉应助科研通管家采纳,获得10
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
优美紫槐应助科研通管家采纳,获得20
3秒前
西海岸的风完成签到,获得积分10
3秒前
BowieHuang应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
4秒前
Akim应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得80
4秒前
4秒前
邓佳鑫Alan应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
邓佳鑫Alan应助科研通管家采纳,获得10
4秒前
浮游应助科研通管家采纳,获得10
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
邓佳鑫Alan应助科研通管家采纳,获得10
4秒前
小蘑菇应助科研通管家采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得10
4秒前
小二郎应助科研通管家采纳,获得20
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
BowieHuang应助科研通管家采纳,获得10
4秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5632939
求助须知:如何正确求助?哪些是违规求助? 4728267
关于积分的说明 14984596
捐赠科研通 4790942
什么是DOI,文献DOI怎么找? 2558668
邀请新用户注册赠送积分活动 1519069
关于科研通互助平台的介绍 1479405