Sequential concrete crack segmentation using deep fully convolutional neural networks and data fusion

卷积神经网络 计算机科学 人工智能 分割 深度学习 编码器 人工神经网络 模式识别(心理学) 图像分割 计算机视觉 操作系统
作者
Maziar Jamshidi,Mamdouh El‐Badry,Chaobo Zhang
标识
DOI:10.1117/12.2592243
摘要

Algorithms that interpret images to locate surface defects, such as cracks, play a key role in an automated inspection system. That is the reason the success of convolutional neural networks (CNNs) in image object detection persuaded researchers to apply deep CNNs for visual surface crack detection. Among various deep learning architectures, encoder decoder architectures with fully convolutional networks (FCNs) are powerful tools for automatically segmenting inspection images and detecting crack maps. In this study the U-Net architecture, as a particular FCN, is trained using the available concrete crack datasets. The trained network is then employed to detect crack maps in a sequence of images taken from a concrete beam-column specimen under a cyclic load test. To enhance performance of the crack segmentation, instead of treating each image in the sequence independently, the detection results of the next stages of the experiment are used to determine the crack map at the current stage. By leveraging the fact that cracks propagate sequentially, a data fusion technique is proposed that updates crack maps by considering the outcome of the next steps. To realize this method, reference points on images are utilized to estimate the deformation of the structural members. The deformation information is then used to project the previously detected crack maps onto the current image. This makes it possible to aggregate current and future detections and achieve higher accuracy. The framework laid out in this study provides tools to filter out false positives and recover missed detections.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蓝淡定完成签到,获得积分10
刚刚
shhoing应助weidingge2011采纳,获得10
刚刚
复杂储发布了新的文献求助10
刚刚
寒月如雪发布了新的文献求助10
1秒前
1秒前
mengzhao完成签到,获得积分10
1秒前
思源应助鲸鱼打滚采纳,获得10
2秒前
小马甲应助啵啵采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
Camellia发布了新的文献求助10
3秒前
汉堡包应助元煜祺采纳,获得10
3秒前
orixero应助三乐采纳,获得10
3秒前
阿托品完成签到,获得积分10
3秒前
少年去游荡完成签到,获得积分10
4秒前
纯真心情完成签到,获得积分20
4秒前
FashionBoy应助sx采纳,获得10
4秒前
奋斗花生发布了新的文献求助10
5秒前
5秒前
小猴子完成签到,获得积分10
5秒前
5秒前
5秒前
ll发布了新的文献求助10
6秒前
Mic应助engine采纳,获得10
6秒前
why完成签到 ,获得积分10
6秒前
土土b发布了新的文献求助10
6秒前
hqq发布了新的文献求助10
6秒前
无趣发布了新的文献求助30
6秒前
6秒前
酷波er应助追光采纳,获得10
7秒前
开朗发卡完成签到,获得积分10
8秒前
Lucas应助蓝淡定采纳,获得10
8秒前
Amosummer发布了新的文献求助10
8秒前
梓翔发布了新的文献求助10
8秒前
9秒前
10秒前
灵巧的嚣发布了新的文献求助100
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531309
求助须知:如何正确求助?哪些是违规求助? 4620136
关于积分的说明 14571914
捐赠科研通 4559695
什么是DOI,文献DOI怎么找? 2498561
邀请新用户注册赠送积分活动 1478526
关于科研通互助平台的介绍 1449957