Sequential concrete crack segmentation using deep fully convolutional neural networks and data fusion

卷积神经网络 计算机科学 人工智能 分割 深度学习 编码器 人工神经网络 模式识别(心理学) 图像分割 计算机视觉 操作系统
作者
Maziar Jamshidi,Mamdouh El‐Badry,Chaobo Zhang
标识
DOI:10.1117/12.2592243
摘要

Algorithms that interpret images to locate surface defects, such as cracks, play a key role in an automated inspection system. That is the reason the success of convolutional neural networks (CNNs) in image object detection persuaded researchers to apply deep CNNs for visual surface crack detection. Among various deep learning architectures, encoder decoder architectures with fully convolutional networks (FCNs) are powerful tools for automatically segmenting inspection images and detecting crack maps. In this study the U-Net architecture, as a particular FCN, is trained using the available concrete crack datasets. The trained network is then employed to detect crack maps in a sequence of images taken from a concrete beam-column specimen under a cyclic load test. To enhance performance of the crack segmentation, instead of treating each image in the sequence independently, the detection results of the next stages of the experiment are used to determine the crack map at the current stage. By leveraging the fact that cracks propagate sequentially, a data fusion technique is proposed that updates crack maps by considering the outcome of the next steps. To realize this method, reference points on images are utilized to estimate the deformation of the structural members. The deformation information is then used to project the previously detected crack maps onto the current image. This makes it possible to aggregate current and future detections and achieve higher accuracy. The framework laid out in this study provides tools to filter out false positives and recover missed detections.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
小宝贝啥也不懂完成签到,获得积分10
1秒前
合成研究菜鸟完成签到,获得积分10
3秒前
3秒前
嘿嘿发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
大个应助444采纳,获得30
6秒前
6秒前
马超完成签到,获得积分10
6秒前
7秒前
慈祥的鑫发布了新的文献求助10
7秒前
Hello应助爱搬玉米采纳,获得10
7秒前
沙子发布了新的文献求助10
8秒前
9秒前
元昭诩应助霸气的数据线采纳,获得10
10秒前
嘚嘚发布了新的文献求助10
11秒前
bkagyin应助XIEQ采纳,获得10
11秒前
浮游应助小山峰2290采纳,获得10
12秒前
zz发布了新的文献求助10
12秒前
12秒前
Hello应助Xjx6519采纳,获得10
12秒前
13秒前
yznfly应助真妮采纳,获得20
14秒前
15秒前
辛勤的诗柳应助Strio采纳,获得30
15秒前
16秒前
Ge完成签到,获得积分10
17秒前
XIEQ完成签到,获得积分10
18秒前
18秒前
18秒前
沙子完成签到,获得积分10
19秒前
19秒前
慈祥的鑫发布了新的文献求助10
19秒前
sunbigfly发布了新的文献求助10
21秒前
23秒前
陈娜娜完成签到,获得积分10
23秒前
XIEQ发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557364
求助须知:如何正确求助?哪些是违规求助? 4642491
关于积分的说明 14668208
捐赠科研通 4583880
什么是DOI,文献DOI怎么找? 2514433
邀请新用户注册赠送积分活动 1488796
关于科研通互助平台的介绍 1459413