Sequential concrete crack segmentation using deep fully convolutional neural networks and data fusion

卷积神经网络 计算机科学 人工智能 分割 深度学习 编码器 人工神经网络 模式识别(心理学) 图像分割 计算机视觉 操作系统
作者
Maziar Jamshidi,Mamdouh El‐Badry,Chaobo Zhang
标识
DOI:10.1117/12.2592243
摘要

Algorithms that interpret images to locate surface defects, such as cracks, play a key role in an automated inspection system. That is the reason the success of convolutional neural networks (CNNs) in image object detection persuaded researchers to apply deep CNNs for visual surface crack detection. Among various deep learning architectures, encoder decoder architectures with fully convolutional networks (FCNs) are powerful tools for automatically segmenting inspection images and detecting crack maps. In this study the U-Net architecture, as a particular FCN, is trained using the available concrete crack datasets. The trained network is then employed to detect crack maps in a sequence of images taken from a concrete beam-column specimen under a cyclic load test. To enhance performance of the crack segmentation, instead of treating each image in the sequence independently, the detection results of the next stages of the experiment are used to determine the crack map at the current stage. By leveraging the fact that cracks propagate sequentially, a data fusion technique is proposed that updates crack maps by considering the outcome of the next steps. To realize this method, reference points on images are utilized to estimate the deformation of the structural members. The deformation information is then used to project the previously detected crack maps onto the current image. This makes it possible to aggregate current and future detections and achieve higher accuracy. The framework laid out in this study provides tools to filter out false positives and recover missed detections.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闲听花落发布了新的文献求助10
1秒前
汉堡包应助铃兰采纳,获得10
1秒前
能干傲易发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
杨知意完成签到,获得积分10
2秒前
gdsfgdf发布了新的文献求助10
2秒前
2秒前
一手灵魂完成签到,获得积分10
3秒前
白踏歌完成签到,获得积分10
3秒前
星辰大海应助容若采纳,获得10
4秒前
xiaomt0518发布了新的文献求助20
4秒前
Zero完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
三白眼发布了新的文献求助10
4秒前
lcc发布了新的文献求助10
5秒前
机灵大米完成签到,获得积分10
5秒前
5秒前
weinaonao完成签到,获得积分10
5秒前
积极冷霜完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
林子鸿完成签到 ,获得积分10
6秒前
6秒前
阿怪发布了新的文献求助10
6秒前
7秒前
7秒前
求文献发布了新的文献求助10
8秒前
果子发布了新的文献求助10
8秒前
欢呼怜烟完成签到,获得积分10
8秒前
9秒前
Mistletoe完成签到 ,获得积分10
10秒前
阿伟完成签到,获得积分10
10秒前
斯文败类应助科研菜狗采纳,获得10
10秒前
熙熙完成签到,获得积分10
10秒前
a成完成签到,获得积分10
11秒前
11秒前
苗轩发布了新的文献求助20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646180
求助须知:如何正确求助?哪些是违规求助? 4770425
关于积分的说明 15033724
捐赠科研通 4804901
什么是DOI,文献DOI怎么找? 2569318
邀请新用户注册赠送积分活动 1526307
关于科研通互助平台的介绍 1485803