Sequential concrete crack segmentation using deep fully convolutional neural networks and data fusion

卷积神经网络 计算机科学 人工智能 分割 深度学习 编码器 人工神经网络 模式识别(心理学) 图像分割 计算机视觉 操作系统
作者
Maziar Jamshidi,Mamdouh El‐Badry,Chaobo Zhang
标识
DOI:10.1117/12.2592243
摘要

Algorithms that interpret images to locate surface defects, such as cracks, play a key role in an automated inspection system. That is the reason the success of convolutional neural networks (CNNs) in image object detection persuaded researchers to apply deep CNNs for visual surface crack detection. Among various deep learning architectures, encoder decoder architectures with fully convolutional networks (FCNs) are powerful tools for automatically segmenting inspection images and detecting crack maps. In this study the U-Net architecture, as a particular FCN, is trained using the available concrete crack datasets. The trained network is then employed to detect crack maps in a sequence of images taken from a concrete beam-column specimen under a cyclic load test. To enhance performance of the crack segmentation, instead of treating each image in the sequence independently, the detection results of the next stages of the experiment are used to determine the crack map at the current stage. By leveraging the fact that cracks propagate sequentially, a data fusion technique is proposed that updates crack maps by considering the outcome of the next steps. To realize this method, reference points on images are utilized to estimate the deformation of the structural members. The deformation information is then used to project the previously detected crack maps onto the current image. This makes it possible to aggregate current and future detections and achieve higher accuracy. The framework laid out in this study provides tools to filter out false positives and recover missed detections.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
流川封完成签到,获得积分10
1秒前
xixi完成签到,获得积分10
2秒前
HHZ完成签到,获得积分10
3秒前
NIUBEN完成签到,获得积分10
3秒前
LBQ完成签到,获得积分10
5秒前
Hello应助LNF采纳,获得10
5秒前
5秒前
鲜艳的巧曼完成签到 ,获得积分10
5秒前
zhou完成签到,获得积分10
5秒前
melody完成签到,获得积分10
6秒前
old杜完成签到,获得积分10
7秒前
CodeCraft应助Moonkiss采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
9秒前
科研通AI2S应助凌L采纳,获得10
9秒前
9秒前
小白猫完成签到,获得积分10
9秒前
废柴发布了新的文献求助10
9秒前
阿拉蕾完成签到 ,获得积分10
11秒前
11秒前
大汤圆圆完成签到 ,获得积分10
12秒前
无情的瑾瑜完成签到,获得积分10
12秒前
shtnice发布了新的文献求助10
12秒前
眼底星空完成签到,获得积分20
13秒前
BowieHuang应助蔚然无尽蓝采纳,获得10
13秒前
13秒前
14秒前
妖妖灵1111完成签到 ,获得积分10
14秒前
FashionBoy应助小雨dida采纳,获得10
14秒前
韩明佐发布了新的文献求助10
15秒前
云一朵完成签到,获得积分10
15秒前
芽芽豆完成签到 ,获得积分10
15秒前
15秒前
雪花发布了新的文献求助10
16秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580550
求助须知:如何正确求助?哪些是违规求助? 4665376
关于积分的说明 14755842
捐赠科研通 4606862
什么是DOI,文献DOI怎么找? 2528078
邀请新用户注册赠送积分活动 1497365
关于科研通互助平台的介绍 1466331