Sequential concrete crack segmentation using deep fully convolutional neural networks and data fusion

卷积神经网络 计算机科学 人工智能 分割 深度学习 编码器 人工神经网络 模式识别(心理学) 图像分割 计算机视觉 操作系统
作者
Maziar Jamshidi,Mamdouh El‐Badry,Chaobo Zhang
标识
DOI:10.1117/12.2592243
摘要

Algorithms that interpret images to locate surface defects, such as cracks, play a key role in an automated inspection system. That is the reason the success of convolutional neural networks (CNNs) in image object detection persuaded researchers to apply deep CNNs for visual surface crack detection. Among various deep learning architectures, encoder decoder architectures with fully convolutional networks (FCNs) are powerful tools for automatically segmenting inspection images and detecting crack maps. In this study the U-Net architecture, as a particular FCN, is trained using the available concrete crack datasets. The trained network is then employed to detect crack maps in a sequence of images taken from a concrete beam-column specimen under a cyclic load test. To enhance performance of the crack segmentation, instead of treating each image in the sequence independently, the detection results of the next stages of the experiment are used to determine the crack map at the current stage. By leveraging the fact that cracks propagate sequentially, a data fusion technique is proposed that updates crack maps by considering the outcome of the next steps. To realize this method, reference points on images are utilized to estimate the deformation of the structural members. The deformation information is then used to project the previously detected crack maps onto the current image. This makes it possible to aggregate current and future detections and achieve higher accuracy. The framework laid out in this study provides tools to filter out false positives and recover missed detections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科目三应助lulu采纳,获得10
1秒前
李某完成签到 ,获得积分10
1秒前
zmnzmnzmn完成签到,获得积分10
1秒前
One发布了新的文献求助10
1秒前
半山完成签到,获得积分20
2秒前
唐艺发布了新的文献求助10
2秒前
牧万万应助温与暖采纳,获得10
2秒前
Edmund完成签到 ,获得积分10
2秒前
ccbk2062发布了新的文献求助10
2秒前
3秒前
Werner完成签到 ,获得积分10
3秒前
充电宝应助flyindancewei采纳,获得10
3秒前
LIUJC完成签到,获得积分10
4秒前
4秒前
4秒前
ll完成签到 ,获得积分10
4秒前
秋实发布了新的文献求助10
4秒前
猫猫陈完成签到,获得积分10
5秒前
5秒前
我爱科研完成签到 ,获得积分10
5秒前
Bo完成签到 ,获得积分10
5秒前
qh0305完成签到,获得积分10
6秒前
www发布了新的文献求助10
6秒前
面壁思过应助云为晓采纳,获得10
6秒前
井盖发完成签到,获得积分10
6秒前
Huang发布了新的文献求助10
7秒前
偷书贼完成签到,获得积分10
8秒前
Cai发布了新的文献求助10
8秒前
8秒前
mwzz233完成签到,获得积分10
9秒前
10秒前
10秒前
郭叠完成签到,获得积分10
10秒前
zzbyxh发布了新的文献求助20
10秒前
zy发布了新的文献求助10
10秒前
10秒前
搜集达人应助aayu采纳,获得20
10秒前
善学以致用应助ruby采纳,获得10
11秒前
蕾蕾完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5395898
求助须知:如何正确求助?哪些是违规求助? 4516372
关于积分的说明 14059288
捐赠科研通 4428272
什么是DOI,文献DOI怎么找? 2432028
邀请新用户注册赠送积分活动 1424218
关于科研通互助平台的介绍 1403436