Sequential concrete crack segmentation using deep fully convolutional neural networks and data fusion

卷积神经网络 计算机科学 人工智能 分割 深度学习 编码器 人工神经网络 模式识别(心理学) 图像分割 计算机视觉 操作系统
作者
Maziar Jamshidi,Mamdouh El‐Badry,Chaobo Zhang
标识
DOI:10.1117/12.2592243
摘要

Algorithms that interpret images to locate surface defects, such as cracks, play a key role in an automated inspection system. That is the reason the success of convolutional neural networks (CNNs) in image object detection persuaded researchers to apply deep CNNs for visual surface crack detection. Among various deep learning architectures, encoder decoder architectures with fully convolutional networks (FCNs) are powerful tools for automatically segmenting inspection images and detecting crack maps. In this study the U-Net architecture, as a particular FCN, is trained using the available concrete crack datasets. The trained network is then employed to detect crack maps in a sequence of images taken from a concrete beam-column specimen under a cyclic load test. To enhance performance of the crack segmentation, instead of treating each image in the sequence independently, the detection results of the next stages of the experiment are used to determine the crack map at the current stage. By leveraging the fact that cracks propagate sequentially, a data fusion technique is proposed that updates crack maps by considering the outcome of the next steps. To realize this method, reference points on images are utilized to estimate the deformation of the structural members. The deformation information is then used to project the previously detected crack maps onto the current image. This makes it possible to aggregate current and future detections and achieve higher accuracy. The framework laid out in this study provides tools to filter out false positives and recover missed detections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助我爱科研采纳,获得10
刚刚
shenglll完成签到 ,获得积分10
1秒前
1秒前
1秒前
酷炫的不悔完成签到,获得积分10
1秒前
Hven发布了新的文献求助10
2秒前
赘婿应助yahong采纳,获得50
2秒前
Ares发布了新的文献求助10
2秒前
2秒前
2秒前
什么我才是大萌萌应助lh采纳,获得10
2秒前
2秒前
小汁儿发布了新的文献求助10
3秒前
zz完成签到,获得积分10
4秒前
4秒前
颖中竹子完成签到,获得积分10
4秒前
4秒前
林夏完成签到,获得积分10
4秒前
新年快乐发布了新的文献求助10
4秒前
lulu发布了新的文献求助10
4秒前
5秒前
充电宝应助001采纳,获得10
6秒前
肥波爱吃鱼完成签到,获得积分10
6秒前
6秒前
6秒前
李超完成签到,获得积分10
7秒前
风趣的晓凡完成签到,获得积分10
7秒前
7秒前
悦悦完成签到,获得积分10
7秒前
7秒前
7秒前
ding应助亓昂采纳,获得10
7秒前
8秒前
无名完成签到,获得积分10
8秒前
8秒前
领导范儿应助大虫子采纳,获得10
8秒前
8秒前
CCCCCL完成签到,获得积分10
9秒前
9秒前
大个应助通通采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Research Handbook on Law and Political Economy Second Edition 398
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4556046
求助须知:如何正确求助?哪些是违规求助? 3984207
关于积分的说明 12334896
捐赠科研通 3654247
什么是DOI,文献DOI怎么找? 2012973
邀请新用户注册赠送积分活动 1047983
科研通“疑难数据库(出版商)”最低求助积分说明 936438