Sequential concrete crack segmentation using deep fully convolutional neural networks and data fusion

卷积神经网络 计算机科学 人工智能 分割 深度学习 编码器 人工神经网络 模式识别(心理学) 图像分割 计算机视觉 操作系统
作者
Maziar Jamshidi,Mamdouh El‐Badry,Chaobo Zhang
标识
DOI:10.1117/12.2592243
摘要

Algorithms that interpret images to locate surface defects, such as cracks, play a key role in an automated inspection system. That is the reason the success of convolutional neural networks (CNNs) in image object detection persuaded researchers to apply deep CNNs for visual surface crack detection. Among various deep learning architectures, encoder decoder architectures with fully convolutional networks (FCNs) are powerful tools for automatically segmenting inspection images and detecting crack maps. In this study the U-Net architecture, as a particular FCN, is trained using the available concrete crack datasets. The trained network is then employed to detect crack maps in a sequence of images taken from a concrete beam-column specimen under a cyclic load test. To enhance performance of the crack segmentation, instead of treating each image in the sequence independently, the detection results of the next stages of the experiment are used to determine the crack map at the current stage. By leveraging the fact that cracks propagate sequentially, a data fusion technique is proposed that updates crack maps by considering the outcome of the next steps. To realize this method, reference points on images are utilized to estimate the deformation of the structural members. The deformation information is then used to project the previously detected crack maps onto the current image. This makes it possible to aggregate current and future detections and achieve higher accuracy. The framework laid out in this study provides tools to filter out false positives and recover missed detections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冬卉发布了新的文献求助10
2秒前
文艺的曼柔完成签到,获得积分10
2秒前
Z.one发布了新的文献求助10
2秒前
pluto应助Crrr采纳,获得10
3秒前
4秒前
荼柒完成签到,获得积分10
5秒前
老头完成签到,获得积分10
6秒前
7秒前
7秒前
天上的云在偷偷看你完成签到,获得积分10
8秒前
柒柒发布了新的文献求助10
11秒前
Candice应助wlm采纳,获得10
12秒前
13完成签到,获得积分10
12秒前
13秒前
冷酷莫言发布了新的文献求助10
13秒前
晓婷婷完成签到 ,获得积分10
15秒前
爱吃猫的鱼完成签到,获得积分10
16秒前
xww发布了新的文献求助10
16秒前
Ava应助105400155采纳,获得10
18秒前
18秒前
18秒前
王九八发布了新的文献求助10
19秒前
21秒前
荼柒完成签到,获得积分10
22秒前
乐乐应助song采纳,获得10
23秒前
23秒前
科目三应助yelllllllllow采纳,获得10
24秒前
psylin发布了新的文献求助10
25秒前
LADY完成签到,获得积分20
25秒前
123发布了新的文献求助10
25秒前
25秒前
26秒前
splash发布了新的文献求助10
27秒前
28秒前
29秒前
樟寿完成签到,获得积分10
29秒前
105400155发布了新的文献求助10
29秒前
suyou完成签到 ,获得积分10
32秒前
32秒前
徐昊楠完成签到 ,获得积分10
33秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Saponins and sapogenins. IX. Saponins and sapogenins of Luffa aegyptica mill seeds (black variety) 500
Fundamentals of Dispersed Multiphase Flows 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3260879
求助须知:如何正确求助?哪些是违规求助? 2901937
关于积分的说明 8318293
捐赠科研通 2571697
什么是DOI,文献DOI怎么找? 1397202
科研通“疑难数据库(出版商)”最低求助积分说明 653684
邀请新用户注册赠送积分活动 632213