The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019

土地覆盖 环境科学 卫星 地理 随机森林 计算机科学 中国 分类器(UML) 比例(比率) 土地利用 气象学 自然地理学 气候学 遥感 地图学 机器学习 人工智能 地质学 土木工程 航空航天工程 考古 工程类
作者
Jie Yang,Xin Huang
出处
期刊:Earth System Science Data [Copernicus Publications]
卷期号:13 (8): 3907-3925 被引量:1709
标识
DOI:10.5194/essd-13-3907-2021
摘要

Abstract. Land cover (LC) determines the energy exchange, water and carbon cycle between Earth's spheres. Accurate LC information is a fundamental parameter for the environment and climate studies. Considering that the LC in China has been altered dramatically with the economic development in the past few decades, sequential and fine-scale LC monitoring is in urgent need. However, currently, fine-resolution annual LC dataset produced by the observational images is generally unavailable for China due to the lack of sufficient training samples and computational capabilities. To deal with this issue, we produced the first Landsat-derived annual China land cover dataset (CLCD) on the Google Earth Engine (GEE) platform, which contains 30 m annual LC and its dynamics in China from 1990 to 2019. We first collected the training samples by combining stable samples extracted from China's land-use/cover datasets (CLUDs) and visually interpreted samples from satellite time-series data, Google Earth and Google Maps. Using 335 709 Landsat images on the GEE, several temporal metrics were constructed and fed to the random forest classifier to obtain classification results. We then proposed a post-processing method incorporating spatial–temporal filtering and logical reasoning to further improve the spatial–temporal consistency of CLCD. Finally, the overall accuracy of CLCD reached 79.31 % based on 5463 visually interpreted samples. A further assessment based on 5131 third-party test samples showed that the overall accuracy of CLCD outperforms that of MCD12Q1, ESACCI_LC, FROM_GLC and GlobeLand30. Besides, we intercompared the CLCD with several Landsat-derived thematic products, which exhibited good consistencies with the Global Forest Change, the Global Surface Water, and three impervious surface products. Based on the CLCD, the trends and patterns of China's LC changes during 1985 and 2019 were revealed, such as expansion of impervious surface (+148.71 %) and water (+18.39 %), decrease in cropland (−4.85 %) and grassland (−3.29 %), and increase in forest (+4.34 %). In general, CLCD reflected the rapid urbanization and a series of ecological projects (e.g. Gain for Green) in China and revealed the anthropogenic implications on LC under the condition of climate change, signifying its potential application in the global change research. The CLCD dataset introduced in this article is freely available at https://doi.org/10.5281/zenodo.4417810 (Yang and Huang, 2021).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
努力发布了新的文献求助10
1秒前
幽默白柏完成签到,获得积分10
1秒前
beiyangtidu发布了新的文献求助10
1秒前
2秒前
酷炫葵阴完成签到,获得积分10
3秒前
温暖的沛凝完成签到 ,获得积分10
3秒前
4秒前
善良晓博发布了新的文献求助10
4秒前
LTT完成签到,获得积分10
4秒前
小小冰发布了新的文献求助10
4秒前
园艺小学生完成签到,获得积分10
5秒前
十里长亭发布了新的文献求助10
5秒前
2021完成签到 ,获得积分10
6秒前
yolo发布了新的文献求助10
6秒前
freedom313514发布了新的文献求助10
7秒前
李健的小迷弟应助李文龙采纳,获得10
7秒前
8秒前
Joy完成签到,获得积分10
8秒前
无为完成签到,获得积分10
9秒前
马騳骉完成签到,获得积分10
10秒前
sure完成签到 ,获得积分10
10秒前
无语啦完成签到,获得积分20
10秒前
clock完成签到 ,获得积分10
11秒前
cccttt完成签到,获得积分10
11秒前
11秒前
222发布了新的文献求助10
12秒前
读不完的文献啊完成签到,获得积分10
14秒前
lll完成签到,获得积分10
15秒前
wanci应助Wangyr采纳,获得10
16秒前
shuogesama完成签到,获得积分10
17秒前
烟雨完成签到,获得积分10
19秒前
freedom313514完成签到,获得积分10
20秒前
20秒前
xiaoliuyaonuli完成签到,获得积分10
20秒前
123456完成签到 ,获得积分10
20秒前
1609855535完成签到,获得积分10
20秒前
精明易真完成签到 ,获得积分10
20秒前
711完成签到,获得积分10
22秒前
李文龙发布了新的文献求助10
24秒前
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736892
求助须知:如何正确求助?哪些是违规求助? 3280817
关于积分的说明 10021089
捐赠科研通 2997457
什么是DOI,文献DOI怎么找? 1644633
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749703