Hydrogen Barriers Based on Chemical Trapping Using Chemically Modulated Al2O3 Grown by Atomic Layer Deposition for InGaZnO Thin-Film Transistors

材料科学 原子层沉积 薄膜晶体管 无定形固体 图层(电子) 阻挡层 化学工程 化学气相沉积 氧化物 化学浴沉积 纳米技术 薄膜 光电子学 结晶学 冶金 化学 有机化学 工程类
作者
Yujin Lee,Taewook Nam,Seunggi Seo,Hwi Yoon,Il‐Kwon Oh,Chong Hwon Lee,Hyukjoon Yoo,Hyun Jae Kim,Wonjun Choi,Seongil Im,Joon Young Yang,Dong Wook Choi,Choongkeun Yoo,Ho-jin Kim,Hyungjun Kim
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (17): 20349-20360 被引量:25
标识
DOI:10.1021/acsami.1c02597
摘要

In this study, the excellent hydrogen barrier properties of the atomic-layer-deposition-grown Al2O3 (ALD Al2O3) are first reported for improving the stability of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). Chemical species in Al2O3 were artificially modulated during the ALD process using different oxidants, such as H2O and O3 (H2O–Al2O3 and O3–Al2O3, respectively). When hydrogen was incorporated into the H2O–Al2O3-passivated TFT, a large negative shift in Vth (ca. −12 V) was observed. In contrast, when hydrogen was incorporated into the O3–Al2O3-passivated TFT, there was a negligible shift in Vth (ca. −0.66 V), which indicates that the O3–Al2O3 has a remarkable hydrogen barrier property. We presented a mechanism for trapping hydrogen in a O3–Al2O3 via various chemical and electrical analyses and revealed that hydrogen molecules were trapped by C–O bonds in the O3–Al2O3, preventing the inflow of hydrogen to the a-IGZO. Additionally, to minimize the deterioration of the pristine device that occurs after a barrier deposition, a bi-layered hydrogen barrier by stacking H2O- and O3–Al2O3 is adopted. Such a barrier can provide ultrastable performance without degradation. Therefore, we envisioned that the excellent hydrogen barrier suggested in this paper can provide the possibility of improving the stability of devices in various fields by effectively blocking hydrogen inflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
摩奥锚完成签到 ,获得积分10
1秒前
芝士发布了新的文献求助10
1秒前
2秒前
缓慢荔枝发布了新的文献求助10
3秒前
electricelectric应助蛙蛙大王采纳,获得30
3秒前
4秒前
无奈的迎丝完成签到,获得积分10
4秒前
4秒前
所所应助欢喜的绿竹采纳,获得10
5秒前
章宇程发布了新的文献求助10
5秒前
完美世界应助啦啦采纳,获得10
6秒前
搜集达人应助何雨航采纳,获得10
6秒前
6秒前
ztm147关注了科研通微信公众号
7秒前
老福贵儿应助温柔觅松采纳,获得10
7秒前
7秒前
赘婿应助拼搏半梦采纳,获得10
8秒前
风枞完成签到 ,获得积分10
8秒前
8秒前
风吹过完成签到,获得积分10
9秒前
刚睡醒发布了新的文献求助10
9秒前
10秒前
11秒前
hqq完成签到,获得积分20
11秒前
winboo完成签到,获得积分10
11秒前
dd发布了新的文献求助30
12秒前
YUgg完成签到,获得积分10
12秒前
我是老大应助Bob采纳,获得10
13秒前
macarthur发布了新的文献求助10
14秒前
桐桐应助xfwd采纳,获得10
14秒前
之贻发布了新的文献求助10
14秒前
完美世界应助醉熏的黄豆采纳,获得10
14秒前
刚睡醒完成签到,获得积分10
14秒前
慕青应助简单若云采纳,获得10
16秒前
HST发布了新的文献求助10
17秒前
17秒前
章宇程完成签到,获得积分10
17秒前
深情安青应助cc采纳,获得10
18秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5299901
求助须知:如何正确求助?哪些是违规求助? 4447967
关于积分的说明 13844251
捐赠科研通 4333585
什么是DOI,文献DOI怎么找? 2378948
邀请新用户注册赠送积分活动 1374119
关于科研通互助平台的介绍 1339733