Hydrogen Barriers Based on Chemical Trapping Using Chemically Modulated Al2O3 Grown by Atomic Layer Deposition for InGaZnO Thin-Film Transistors

材料科学 原子层沉积 薄膜晶体管 无定形固体 图层(电子) 阻挡层 化学工程 化学气相沉积 氧化物 化学浴沉积 纳米技术 薄膜 光电子学 结晶学 冶金 化学 有机化学 工程类
作者
Yujin Lee,Taewook Nam,Seunggi Seo,Hwi Yoon,Il‐Kwon Oh,Chong Hwon Lee,Hyukjoon Yoo,Hyun Jae Kim,Wonjun Choi,Seongil Im,Joon Young Yang,Dong Wook Choi,Choongkeun Yoo,Ho-jin Kim,Hyungjun Kim
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:13 (17): 20349-20360 被引量:25
标识
DOI:10.1021/acsami.1c02597
摘要

In this study, the excellent hydrogen barrier properties of the atomic-layer-deposition-grown Al2O3 (ALD Al2O3) are first reported for improving the stability of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). Chemical species in Al2O3 were artificially modulated during the ALD process using different oxidants, such as H2O and O3 (H2O–Al2O3 and O3–Al2O3, respectively). When hydrogen was incorporated into the H2O–Al2O3-passivated TFT, a large negative shift in Vth (ca. −12 V) was observed. In contrast, when hydrogen was incorporated into the O3–Al2O3-passivated TFT, there was a negligible shift in Vth (ca. −0.66 V), which indicates that the O3–Al2O3 has a remarkable hydrogen barrier property. We presented a mechanism for trapping hydrogen in a O3–Al2O3 via various chemical and electrical analyses and revealed that hydrogen molecules were trapped by C–O bonds in the O3–Al2O3, preventing the inflow of hydrogen to the a-IGZO. Additionally, to minimize the deterioration of the pristine device that occurs after a barrier deposition, a bi-layered hydrogen barrier by stacking H2O- and O3–Al2O3 is adopted. Such a barrier can provide ultrastable performance without degradation. Therefore, we envisioned that the excellent hydrogen barrier suggested in this paper can provide the possibility of improving the stability of devices in various fields by effectively blocking hydrogen inflows.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张茂发布了新的文献求助10
刚刚
qss发布了新的文献求助10
1秒前
youjiwuji发布了新的文献求助30
1秒前
Jasper应助孙帅采纳,获得10
1秒前
温柔发卡发布了新的文献求助10
2秒前
FG发布了新的文献求助10
2秒前
wwbb发布了新的文献求助20
2秒前
雷媛发布了新的文献求助10
3秒前
silence发布了新的文献求助10
3秒前
3秒前
CipherSage应助asdasd采纳,获得10
4秒前
李云龙完成签到 ,获得积分10
4秒前
turbo发布了新的文献求助10
5秒前
l991215y完成签到,获得积分10
5秒前
5秒前
6秒前
123131发布了新的文献求助10
6秒前
犹豫海莲发布了新的文献求助10
6秒前
在水一方应助徐银燕采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
bzg发布了新的文献求助10
8秒前
9秒前
9秒前
漏脑之鱼完成签到 ,获得积分10
9秒前
9秒前
高LL完成签到,获得积分10
10秒前
10秒前
酷酷笑旋完成签到,获得积分10
10秒前
10秒前
充电宝应助turbo采纳,获得10
10秒前
老臣完成签到,获得积分10
11秒前
学术小菜鸟完成签到,获得积分20
11秒前
呵呵哒完成签到,获得积分20
11秒前
科目三应助xiaoyuan采纳,获得10
11秒前
今后应助趙途嘵生采纳,获得10
12秒前
asdasd完成签到,获得积分10
12秒前
科研通AI6应助陈秋禹采纳,获得10
12秒前
skyangar发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5526219
求助须知:如何正确求助?哪些是违规求助? 4616313
关于积分的说明 14553183
捐赠科研通 4554594
什么是DOI,文献DOI怎么找? 2495952
邀请新用户注册赠送积分活动 1476311
关于科研通互助平台的介绍 1447978