Mitotic Nuclei Detection in Breast Histopathology Images using YOLOv4

计算机科学 组织病理学 人工智能 分割 模式识别(心理学) 图像分割 数字化病理学 乳腺癌 病理 癌症 医学 内科学
作者
Lekha Nair,Ramkishor Prabhu R,Gowry Sugathan,Kiran V Gireesh,Akshay Gopinathan Nair
标识
DOI:10.1109/icccnt51525.2021.9579969
摘要

World Health Organization (WHO) has reported that breast cancer is the most often found cancer in women and it is adversary affecting millions of women all around the world. Early detection and real-time screening can immensely assist the patient. Mitotic nuclei detection in breast histopathology images plays a critical function to evaluate the aggressiveness of the cancer malignancy. Cancer is identified by pathologists by analyzing histopathology images of tissues and determines numerous biomarkers. Since there is only minute variation among mitotic and not mitotic cells, this procedure is tedious, time-consuming, and instinctive. Various image processing techniques and deep learning models had been proposed to automate the procedure of detecting mitotic cells from the histopathology images. Traditional techniques commonly perform nuclei segmentation followed by classification which calls for immoderate computational resources. These models also lack expected accuracy due to the shortage of proper balanced datasets and errors during image staining. In this paper, we define the challenges as an object detection task, wherein the mitotic nuclei are directly predicted without nuclei segmentation in a single step using YOLOv4, which is a fast-operating object detection model. The model was trained with 506 mitosis instances from the openly available MITOS-ATYPIA-14 grand challenge dataset that comprises hematoxylin and eosin (H&E) stained breast histopathology images annotated by experienced pathologists. The outcome suggests that the YOLOv4 model with RGB images as input offers an F-measure of 0.73 and can be used as a dependable and much less computationally exhaustive approach among the prevailing ones.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jiysh完成签到,获得积分0
刚刚
1秒前
三金发布了新的文献求助10
1秒前
一个发布了新的文献求助10
1秒前
1秒前
麦子完成签到,获得积分10
1秒前
魔幻的雁兰完成签到,获得积分10
2秒前
乐乐应助zhangzhuopu采纳,获得10
3秒前
3秒前
QR发布了新的文献求助10
3秒前
qing2010发布了新的文献求助10
4秒前
清浅完成签到,获得积分20
4秒前
4秒前
反杀闰土的猹完成签到,获得积分10
5秒前
sam完成签到,获得积分10
6秒前
7秒前
wanci应助Arya采纳,获得10
7秒前
犇骉发布了新的文献求助10
8秒前
9秒前
9秒前
沉思猫发布了新的文献求助10
9秒前
稳赚赚发布了新的文献求助10
9秒前
生动以山完成签到,获得积分10
9秒前
10秒前
仁爱仙人掌完成签到,获得积分10
10秒前
11秒前
11秒前
nightmoonsun发布了新的文献求助10
13秒前
ShuV发布了新的文献求助10
14秒前
双黄应助DUANYALI采纳,获得10
14秒前
清浅发布了新的文献求助10
14秒前
生动以山发布了新的文献求助10
14秒前
景一诚发布了新的文献求助10
15秒前
小鸭子应助1111111采纳,获得10
16秒前
16秒前
justwander完成签到,获得积分10
16秒前
学术小白完成签到,获得积分10
16秒前
SSSSscoliosis完成签到,获得积分10
17秒前
沉思猫完成签到,获得积分10
17秒前
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305226
求助须知:如何正确求助?哪些是违规求助? 2939075
关于积分的说明 8491339
捐赠科研通 2613524
什么是DOI,文献DOI怎么找? 1427464
科研通“疑难数据库(出版商)”最低求助积分说明 663054
邀请新用户注册赠送积分活动 647708