Unsupervised Change Detection From Heterogeneous Data Based on Image Translation

计算机科学 人工智能 合成孔径雷达 事件(粒子物理) 模式识别(心理学) 特征(语言学) 翻译(生物学) 变更检测 特征检测(计算机视觉) 图像(数学) 图像处理 计算机视觉 聚类分析 像素 物理 哲学 信使核糖核酸 基因 化学 量子力学 生物化学 语言学
作者
Zhun-ga Liu,Zuowei Zhang,Quan Pan,Liang-Bo Ning
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-13 被引量:8
标识
DOI:10.1109/tgrs.2021.3097717
摘要

It is quite an important and challenging problem for change detection (CD) from heterogeneous remote sensing images. The images obtained from different sensors (i.e., synthetic aperture radar (SAR) & optical camera) characterize the distinct properties of objects. Thus, it is impossible to detect changes by direct comparison of heterogeneous images. In this article, a new unsupervised change detection (USCD) method is proposed based on image translation. The cycle-consistent adversarial networks (CycleGANs) are employed to learn the subimage to subimage mapping relation using the given pair (i.e., before and after the event) of heterogeneous images from which the changes will be detected. Then, we can translate one image (e.g., SAR) from its original feature space (e.g., SAR) to another space (e.g., optical). By doing this, the pair of images can be represented in a common feature space (e.g., optical). The pixels with close pattern values in the before-event image may have quite different values in the after-event image if the change happens on some ones. Thus, we can generate the difference map between the translated before-event image and the original after-event image. Then, the difference map is divided into changed and unchanged parts. However, these detection results are not very reliable. We will select some significantly changed and unchanged pixel pairs from the two parts with the clustering technique (i.e., $K$ -means). These selected pixel pairs are used to learn a binary classifier, and the other pixel pairs will be classified by this classifier to obtain the final CD results. Experimental results on different real datasets demonstrate the effectiveness of the proposed USCD method compared with several other related methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
不眠的人完成签到,获得积分10
刚刚
1秒前
2秒前
BBking完成签到,获得积分10
2秒前
顾矜应助douyq采纳,获得10
2秒前
2秒前
3秒前
沉默洋葱完成签到,获得积分10
4秒前
镜子发布了新的文献求助10
5秒前
小北发布了新的文献求助10
6秒前
Lucas应助学术小王子采纳,获得10
7秒前
7秒前
cy关注了科研通微信公众号
7秒前
胡几枚发布了新的文献求助10
7秒前
JHcHuN完成签到,获得积分10
8秒前
8秒前
8秒前
Owen应助Tessa采纳,获得10
8秒前
Waqas发布了新的文献求助10
8秒前
英俊的铭应助xxxhl采纳,获得10
8秒前
gf发布了新的文献求助10
8秒前
yangya给yangya的求助进行了留言
9秒前
jianghe完成签到,获得积分10
10秒前
yy应助jacs111采纳,获得10
12秒前
曹梦梦发布了新的文献求助10
12秒前
华子黄发布了新的文献求助10
13秒前
CarolineOY应助小白采纳,获得10
13秒前
zzyytt完成签到,获得积分10
14秒前
香蕉觅云应助威武从霜采纳,获得10
14秒前
ysl发布了新的文献求助10
14秒前
搜集达人应助JHcHuN采纳,获得10
16秒前
16秒前
QASD发布了新的文献求助10
17秒前
小二郎应助张可采纳,获得10
17秒前
南山无梅落完成签到 ,获得积分10
18秒前
18秒前
19秒前
20秒前
叶叶完成签到 ,获得积分10
20秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741086
求助须知:如何正确求助?哪些是违规求助? 3283852
关于积分的说明 10037232
捐赠科研通 3000684
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783858
科研通“疑难数据库(出版商)”最低求助积分说明 750442