Genomic prediction of growth traits in scallops using convolutional neural networks

生物 人工智能 卷积神经网络 人口 贝叶斯定理 阿戈皮特恩辐射体 最佳线性无偏预测 机器学习 选择(遗传算法) 模式识别(心理学) 统计 贝叶斯概率 数学 计算机科学 扇贝 生态学 人口学 社会学
作者
Xinghai Zhu,Ping Ni,Qiang Xing,Yangfan Wang,Xiaoting Huang,Xiaoli Hu,Jingjie Hu,Xiao‐Lin Wu,Zhenmin Bao
出处
期刊:Aquaculture [Elsevier]
卷期号:545: 737171-737171 被引量:11
标识
DOI:10.1016/j.aquaculture.2021.737171
摘要

Deep learning neural networks applied to the genomic prediction of complex traits have been of great interest in recent years. Previous studies primarily used simulated phenotypes or/and genotypes in plants and animals. The properties of deep learning models used in genomic selection are not well characterized and not well validated with real datasets. In the present study, we evaluated the performance of a class of deep learning methods called convolutional neural networks (CNNs) in the genomic prediction of four quantitative traits (e.g., shell length, shell height, shell width, and total weight) in a Bay scallop (Argopecten irradians irradians) population. The results were compared with those obtained from two linear models, RR-GBLUP and Bayes B, and multilayer perceptron neural networks (MLPs). One-convolutional layer CNNs with an optimal structure, which was obtained by using AIC or BIC method, had roughly comparable prediction accuracies on the four quantitive traits in the scallop population. Overall, CNNs outperformed RR-GBLUP, Bayes B and MLPs on shell height, shell width and total weight, and performed slightly worse than only Bayes B on shell length. MLPs gave the least accurate predictions on average among the four types of models. Because MLPs had far more parameters to estimate than the two linear models, and their predictions were challenged by the overfitting problem. Genomic prediction accuracy varied with SNP panel size and training population size.The impact of varied marker densities and two GWAS-based scenarios for SNP selection on genomic prediction accuracy was investigated as well. The present results provide evidence that supports the use of convolutional neural networks for genomic prediction of complex traits in scallops, yet the optimal structures of CNNs remained to be exploited in future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
现实世界npc完成签到 ,获得积分10
刚刚
刚刚
1秒前
1秒前
2秒前
2秒前
2秒前
zachary009完成签到 ,获得积分10
2秒前
可爱的函函应助快乐小狗采纳,获得10
2秒前
3秒前
3秒前
jia完成签到,获得积分10
4秒前
果茶去冰完成签到 ,获得积分10
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
geold发布了新的文献求助30
5秒前
6秒前
6秒前
qiuxu完成签到,获得积分10
7秒前
dyyy发布了新的文献求助10
7秒前
7秒前
彬彬发布了新的文献求助10
7秒前
Murray完成签到,获得积分10
8秒前
junge发布了新的文献求助20
8秒前
言寺发布了新的文献求助30
8秒前
9秒前
阿离发布了新的文献求助10
9秒前
韩晨晨发布了新的文献求助20
9秒前
爹爹发布了新的文献求助10
10秒前
10秒前
Mike发布了新的文献求助10
10秒前
洋芋儿完成签到 ,获得积分10
11秒前
11秒前
破心完成签到,获得积分10
11秒前
11秒前
陈圈圈完成签到,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 800
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
上海破产法庭破产实务案例精选(2019-2024) 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5478095
求助须知:如何正确求助?哪些是违规求助? 4579824
关于积分的说明 14371025
捐赠科研通 4508054
什么是DOI,文献DOI怎么找? 2470401
邀请新用户注册赠送积分活动 1457273
关于科研通互助平台的介绍 1431249