Genomic prediction of growth traits in scallops using convolutional neural networks

生物 人工智能 卷积神经网络 人口 贝叶斯定理 阿戈皮特恩辐射体 最佳线性无偏预测 机器学习 选择(遗传算法) 模式识别(心理学) 统计 贝叶斯概率 数学 计算机科学 扇贝 生态学 社会学 人口学
作者
Xinghai Zhu,Ping Ni,Qiang Xing,Yangfan Wang,Xiaoting Huang,Xiaoli Hu,Jingjie Hu,Xiao‐Lin Wu,Zhenmin Bao
出处
期刊:Aquaculture [Elsevier]
卷期号:545: 737171-737171 被引量:11
标识
DOI:10.1016/j.aquaculture.2021.737171
摘要

Deep learning neural networks applied to the genomic prediction of complex traits have been of great interest in recent years. Previous studies primarily used simulated phenotypes or/and genotypes in plants and animals. The properties of deep learning models used in genomic selection are not well characterized and not well validated with real datasets. In the present study, we evaluated the performance of a class of deep learning methods called convolutional neural networks (CNNs) in the genomic prediction of four quantitative traits (e.g., shell length, shell height, shell width, and total weight) in a Bay scallop (Argopecten irradians irradians) population. The results were compared with those obtained from two linear models, RR-GBLUP and Bayes B, and multilayer perceptron neural networks (MLPs). One-convolutional layer CNNs with an optimal structure, which was obtained by using AIC or BIC method, had roughly comparable prediction accuracies on the four quantitive traits in the scallop population. Overall, CNNs outperformed RR-GBLUP, Bayes B and MLPs on shell height, shell width and total weight, and performed slightly worse than only Bayes B on shell length. MLPs gave the least accurate predictions on average among the four types of models. Because MLPs had far more parameters to estimate than the two linear models, and their predictions were challenged by the overfitting problem. Genomic prediction accuracy varied with SNP panel size and training population size.The impact of varied marker densities and two GWAS-based scenarios for SNP selection on genomic prediction accuracy was investigated as well. The present results provide evidence that supports the use of convolutional neural networks for genomic prediction of complex traits in scallops, yet the optimal structures of CNNs remained to be exploited in future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
上官若男应助橘子采纳,获得10
刚刚
5秒前
TQY发布了新的文献求助10
6秒前
刘蓓蓓发布了新的文献求助10
7秒前
善学以致用应助huohuo采纳,获得10
7秒前
不说再见完成签到,获得积分10
7秒前
zhonglv7应助喜悦白卉采纳,获得10
7秒前
8秒前
小阿博发布了新的文献求助10
8秒前
小二郎应助优雅的老姆采纳,获得10
10秒前
含蓄的卿完成签到,获得积分20
11秒前
11秒前
Gin完成签到,获得积分10
12秒前
charint发布了新的文献求助10
12秒前
iNk应助齐嘉懿采纳,获得10
14秒前
deer发布了新的文献求助10
15秒前
563998332完成签到,获得积分10
15秒前
我是老大应助强健的成协采纳,获得10
16秒前
Akim应助Skywalker采纳,获得30
16秒前
刘强完成签到,获得积分10
18秒前
22秒前
川桜完成签到,获得积分10
22秒前
cy完成签到 ,获得积分10
22秒前
辛勤的刺猬完成签到 ,获得积分10
23秒前
光亮未来完成签到,获得积分10
24秒前
Zone完成签到 ,获得积分10
24秒前
燚槿发布了新的文献求助10
25秒前
25秒前
田様应助YY采纳,获得10
26秒前
29秒前
29秒前
Richard完成签到,获得积分10
29秒前
Sunrise完成签到,获得积分10
29秒前
31秒前
aaa完成签到,获得积分10
32秒前
帅哥发布了新的文献求助10
34秒前
易方完成签到,获得积分10
34秒前
35秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288966
求助须知:如何正确求助?哪些是违规求助? 4440796
关于积分的说明 13825631
捐赠科研通 4323077
什么是DOI,文献DOI怎么找? 2372945
邀请新用户注册赠送积分活动 1368399
关于科研通互助平台的介绍 1332283