已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Genomic prediction of growth traits in scallops using convolutional neural networks

生物 人工智能 卷积神经网络 人口 贝叶斯定理 阿戈皮特恩辐射体 最佳线性无偏预测 机器学习 选择(遗传算法) 模式识别(心理学) 统计 贝叶斯概率 数学 计算机科学 扇贝 生态学 人口学 社会学
作者
Xinghai Zhu,Ping Ni,Qiang Xing,Yangfan Wang,Xiaoting Huang,Xiaoli Hu,Jingjie Hu,Xiao‐Lin Wu,Zhenmin Bao
出处
期刊:Aquaculture [Elsevier]
卷期号:545: 737171-737171 被引量:11
标识
DOI:10.1016/j.aquaculture.2021.737171
摘要

Deep learning neural networks applied to the genomic prediction of complex traits have been of great interest in recent years. Previous studies primarily used simulated phenotypes or/and genotypes in plants and animals. The properties of deep learning models used in genomic selection are not well characterized and not well validated with real datasets. In the present study, we evaluated the performance of a class of deep learning methods called convolutional neural networks (CNNs) in the genomic prediction of four quantitative traits (e.g., shell length, shell height, shell width, and total weight) in a Bay scallop (Argopecten irradians irradians) population. The results were compared with those obtained from two linear models, RR-GBLUP and Bayes B, and multilayer perceptron neural networks (MLPs). One-convolutional layer CNNs with an optimal structure, which was obtained by using AIC or BIC method, had roughly comparable prediction accuracies on the four quantitive traits in the scallop population. Overall, CNNs outperformed RR-GBLUP, Bayes B and MLPs on shell height, shell width and total weight, and performed slightly worse than only Bayes B on shell length. MLPs gave the least accurate predictions on average among the four types of models. Because MLPs had far more parameters to estimate than the two linear models, and their predictions were challenged by the overfitting problem. Genomic prediction accuracy varied with SNP panel size and training population size.The impact of varied marker densities and two GWAS-based scenarios for SNP selection on genomic prediction accuracy was investigated as well. The present results provide evidence that supports the use of convolutional neural networks for genomic prediction of complex traits in scallops, yet the optimal structures of CNNs remained to be exploited in future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
1609028发布了新的文献求助10
3秒前
852应助weiy采纳,获得10
4秒前
JY发布了新的文献求助10
4秒前
4秒前
5秒前
6秒前
脑洞疼应助Minn采纳,获得10
7秒前
22关注了科研通微信公众号
7秒前
8秒前
10秒前
LHR发布了新的文献求助10
10秒前
10秒前
科研通AI6应助dxtmm采纳,获得10
11秒前
11秒前
13秒前
mmmmm发布了新的文献求助10
15秒前
16秒前
jwh111完成签到,获得积分10
16秒前
17秒前
又困完成签到 ,获得积分10
18秒前
陈宇发布了新的文献求助10
18秒前
19秒前
酷波er应助JY采纳,获得10
19秒前
19秒前
OMG001发布了新的文献求助10
21秒前
ramon发布了新的文献求助10
21秒前
gjww完成签到,获得积分0
23秒前
23秒前
23秒前
24秒前
jjdbqml发布了新的文献求助10
24秒前
26秒前
26秒前
26秒前
27秒前
晓一完成签到,获得积分20
27秒前
27秒前
柠檬树发布了新的文献求助10
28秒前
LJM发布了新的文献求助10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394250
求助须知:如何正确求助?哪些是违规求助? 4515485
关于积分的说明 14054399
捐赠科研通 4426733
什么是DOI,文献DOI怎么找? 2431463
邀请新用户注册赠送积分活动 1423608
关于科研通互助平台的介绍 1402559