Genomic prediction of growth traits in scallops using convolutional neural networks

生物 人工智能 卷积神经网络 人口 贝叶斯定理 阿戈皮特恩辐射体 最佳线性无偏预测 机器学习 选择(遗传算法) 模式识别(心理学) 统计 贝叶斯概率 数学 计算机科学 扇贝 生态学 人口学 社会学
作者
Xinghai Zhu,Ping Ni,Qiang Xing,Yangfan Wang,Xiaoting Huang,Xiaoli Hu,Jingjie Hu,Xiao‐Lin Wu,Zhenmin Bao
出处
期刊:Aquaculture [Elsevier BV]
卷期号:545: 737171-737171 被引量:11
标识
DOI:10.1016/j.aquaculture.2021.737171
摘要

Deep learning neural networks applied to the genomic prediction of complex traits have been of great interest in recent years. Previous studies primarily used simulated phenotypes or/and genotypes in plants and animals. The properties of deep learning models used in genomic selection are not well characterized and not well validated with real datasets. In the present study, we evaluated the performance of a class of deep learning methods called convolutional neural networks (CNNs) in the genomic prediction of four quantitative traits (e.g., shell length, shell height, shell width, and total weight) in a Bay scallop (Argopecten irradians irradians) population. The results were compared with those obtained from two linear models, RR-GBLUP and Bayes B, and multilayer perceptron neural networks (MLPs). One-convolutional layer CNNs with an optimal structure, which was obtained by using AIC or BIC method, had roughly comparable prediction accuracies on the four quantitive traits in the scallop population. Overall, CNNs outperformed RR-GBLUP, Bayes B and MLPs on shell height, shell width and total weight, and performed slightly worse than only Bayes B on shell length. MLPs gave the least accurate predictions on average among the four types of models. Because MLPs had far more parameters to estimate than the two linear models, and their predictions were challenged by the overfitting problem. Genomic prediction accuracy varied with SNP panel size and training population size.The impact of varied marker densities and two GWAS-based scenarios for SNP selection on genomic prediction accuracy was investigated as well. The present results provide evidence that supports the use of convolutional neural networks for genomic prediction of complex traits in scallops, yet the optimal structures of CNNs remained to be exploited in future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
段一帆发布了新的文献求助10
1秒前
Weiwei应助天然呆的最可爱采纳,获得10
1秒前
小柚子完成签到,获得积分10
1秒前
陌路发布了新的文献求助30
1秒前
东西南北发布了新的文献求助10
2秒前
张zi完成签到,获得积分10
2秒前
2秒前
隐形曼青应助iceburg采纳,获得10
3秒前
周丽萍发布了新的文献求助10
4秒前
4秒前
pentayouth发布了新的文献求助10
4秒前
程公子发布了新的文献求助10
4秒前
小蘑菇应助haoyunlai采纳,获得10
4秒前
脑洞疼应助M橘子采纳,获得30
5秒前
科研通AI5应助sandyhaikeyi采纳,获得10
5秒前
草长莺飞完成签到,获得积分10
5秒前
Ec2ved完成签到,获得积分10
6秒前
6秒前
DI完成签到,获得积分10
6秒前
7秒前
偏振光完成签到 ,获得积分10
7秒前
最好的发布了新的文献求助10
8秒前
爱听歌半山完成签到,获得积分10
8秒前
飘零枫叶发布了新的文献求助10
8秒前
BSFXZ完成签到,获得积分10
8秒前
陈豪杰完成签到,获得积分10
8秒前
9秒前
9秒前
黄明宇关注了科研通微信公众号
9秒前
9秒前
ai白哥完成签到,获得积分10
10秒前
Owen应助放飞的羊驼采纳,获得10
10秒前
英姑应助周丽萍采纳,获得10
11秒前
小蘑菇应助Kevin采纳,获得10
12秒前
顾矜应助zgsjymysmyy采纳,获得10
13秒前
zrs完成签到,获得积分10
14秒前
lx发布了新的文献求助10
14秒前
充满希望发布了新的文献求助10
14秒前
泽北完成签到 ,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4559024
求助须知:如何正确求助?哪些是违规求助? 3985748
关于积分的说明 12340214
捐赠科研通 3656286
什么是DOI,文献DOI怎么找? 2014287
邀请新用户注册赠送积分活动 1049131
科研通“疑难数据库(出版商)”最低求助积分说明 937477