Genomic prediction of growth traits in scallops using convolutional neural networks

生物 人工智能 卷积神经网络 人口 贝叶斯定理 阿戈皮特恩辐射体 最佳线性无偏预测 机器学习 选择(遗传算法) 模式识别(心理学) 统计 贝叶斯概率 数学 计算机科学 扇贝 生态学 社会学 人口学
作者
Xinghai Zhu,Ping Ni,Qiang Xing,Yangfan Wang,Xiaoting Huang,Xiaoli Hu,Jingjie Hu,Xiao‐Lin Wu,Zhenmin Bao
出处
期刊:Aquaculture [Elsevier]
卷期号:545: 737171-737171 被引量:11
标识
DOI:10.1016/j.aquaculture.2021.737171
摘要

Deep learning neural networks applied to the genomic prediction of complex traits have been of great interest in recent years. Previous studies primarily used simulated phenotypes or/and genotypes in plants and animals. The properties of deep learning models used in genomic selection are not well characterized and not well validated with real datasets. In the present study, we evaluated the performance of a class of deep learning methods called convolutional neural networks (CNNs) in the genomic prediction of four quantitative traits (e.g., shell length, shell height, shell width, and total weight) in a Bay scallop (Argopecten irradians irradians) population. The results were compared with those obtained from two linear models, RR-GBLUP and Bayes B, and multilayer perceptron neural networks (MLPs). One-convolutional layer CNNs with an optimal structure, which was obtained by using AIC or BIC method, had roughly comparable prediction accuracies on the four quantitive traits in the scallop population. Overall, CNNs outperformed RR-GBLUP, Bayes B and MLPs on shell height, shell width and total weight, and performed slightly worse than only Bayes B on shell length. MLPs gave the least accurate predictions on average among the four types of models. Because MLPs had far more parameters to estimate than the two linear models, and their predictions were challenged by the overfitting problem. Genomic prediction accuracy varied with SNP panel size and training population size.The impact of varied marker densities and two GWAS-based scenarios for SNP selection on genomic prediction accuracy was investigated as well. The present results provide evidence that supports the use of convolutional neural networks for genomic prediction of complex traits in scallops, yet the optimal structures of CNNs remained to be exploited in future studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草莓熊1215完成签到 ,获得积分10
2秒前
严笑容发布了新的文献求助10
3秒前
3秒前
风中小懒虫完成签到,获得积分10
4秒前
Henry完成签到,获得积分10
5秒前
科研通AI2S应助舍予采纳,获得10
6秒前
香樟遗完成签到 ,获得积分10
7秒前
眼睛大迎波完成签到,获得积分10
8秒前
Dr.完成签到 ,获得积分10
9秒前
邪恶青年完成签到,获得积分10
10秒前
LM完成签到,获得积分10
12秒前
Hammerdai完成签到,获得积分10
12秒前
SANDY完成签到,获得积分10
14秒前
番茄炒蛋不要番茄le完成签到,获得积分10
15秒前
巴吉完成签到 ,获得积分10
15秒前
16秒前
一个完成签到,获得积分10
16秒前
科研菜鸡完成签到 ,获得积分10
17秒前
称心采枫完成签到 ,获得积分10
17秒前
神说要有光完成签到 ,获得积分10
18秒前
文静千凡完成签到,获得积分10
19秒前
哦吼吼博仔完成签到,获得积分10
19秒前
大王869完成签到 ,获得积分10
21秒前
RadiantYT完成签到,获得积分10
21秒前
22秒前
Aliya完成签到 ,获得积分10
23秒前
23秒前
25秒前
科研通AI2S应助科研通管家采纳,获得10
25秒前
情怀应助科研通管家采纳,获得10
25秒前
好困应助科研通管家采纳,获得10
25秒前
仲夏完成签到,获得积分10
25秒前
LuciusHe完成签到,获得积分10
28秒前
生产队的建设者完成签到 ,获得积分10
28秒前
momo完成签到 ,获得积分10
30秒前
忧伤的八宝粥完成签到,获得积分10
31秒前
CCC完成签到 ,获得积分10
31秒前
初夏完成签到 ,获得积分10
34秒前
34秒前
星星完成签到 ,获得积分10
36秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134053
求助须知:如何正确求助?哪些是违规求助? 2784853
关于积分的说明 7768983
捐赠科研通 2440314
什么是DOI,文献DOI怎么找? 1297361
科研通“疑难数据库(出版商)”最低求助积分说明 624959
版权声明 600792