亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Genomic prediction of growth traits in scallops using convolutional neural networks

生物 人工智能 卷积神经网络 人口 贝叶斯定理 阿戈皮特恩辐射体 最佳线性无偏预测 机器学习 选择(遗传算法) 模式识别(心理学) 统计 贝叶斯概率 数学 计算机科学 扇贝 生态学 人口学 社会学
作者
Xinghai Zhu,Ping Ni,Qiang Xing,Yangfan Wang,Xiaoting Huang,Xiaoli Hu,Jingjie Hu,Xiao‐Lin Wu,Zhenmin Bao
出处
期刊:Aquaculture [Elsevier]
卷期号:545: 737171-737171 被引量:11
标识
DOI:10.1016/j.aquaculture.2021.737171
摘要

Deep learning neural networks applied to the genomic prediction of complex traits have been of great interest in recent years. Previous studies primarily used simulated phenotypes or/and genotypes in plants and animals. The properties of deep learning models used in genomic selection are not well characterized and not well validated with real datasets. In the present study, we evaluated the performance of a class of deep learning methods called convolutional neural networks (CNNs) in the genomic prediction of four quantitative traits (e.g., shell length, shell height, shell width, and total weight) in a Bay scallop (Argopecten irradians irradians) population. The results were compared with those obtained from two linear models, RR-GBLUP and Bayes B, and multilayer perceptron neural networks (MLPs). One-convolutional layer CNNs with an optimal structure, which was obtained by using AIC or BIC method, had roughly comparable prediction accuracies on the four quantitive traits in the scallop population. Overall, CNNs outperformed RR-GBLUP, Bayes B and MLPs on shell height, shell width and total weight, and performed slightly worse than only Bayes B on shell length. MLPs gave the least accurate predictions on average among the four types of models. Because MLPs had far more parameters to estimate than the two linear models, and their predictions were challenged by the overfitting problem. Genomic prediction accuracy varied with SNP panel size and training population size.The impact of varied marker densities and two GWAS-based scenarios for SNP selection on genomic prediction accuracy was investigated as well. The present results provide evidence that supports the use of convolutional neural networks for genomic prediction of complex traits in scallops, yet the optimal structures of CNNs remained to be exploited in future studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑笑完成签到 ,获得积分10
2秒前
ding应助LIAN采纳,获得30
5秒前
aze完成签到,获得积分10
8秒前
genius完成签到 ,获得积分10
9秒前
灵巧大地完成签到,获得积分10
9秒前
miaomiao123完成签到 ,获得积分10
18秒前
20秒前
念0完成签到 ,获得积分10
23秒前
点点完成签到 ,获得积分10
24秒前
24秒前
落后博完成签到,获得积分20
25秒前
白华苍松发布了新的文献求助10
26秒前
花海发布了新的文献求助10
31秒前
姆姆没买完成签到 ,获得积分10
31秒前
32秒前
35秒前
Thi发布了新的文献求助100
36秒前
amin完成签到 ,获得积分10
36秒前
xjy完成签到,获得积分10
38秒前
38秒前
Pluto发布了新的文献求助10
38秒前
xjy发布了新的文献求助10
41秒前
大模型应助yy采纳,获得30
41秒前
华仔应助yunshui采纳,获得10
46秒前
48秒前
科研通AI6应助落后博采纳,获得10
49秒前
科研通AI6应助xjy采纳,获得10
51秒前
我爱Chem完成签到 ,获得积分10
51秒前
动人的向松完成签到 ,获得积分10
52秒前
loopy发布了新的文献求助10
53秒前
CipherSage应助Proustian采纳,获得10
53秒前
53秒前
呆萌剑封完成签到,获得积分20
54秒前
cookou发布了新的文献求助30
59秒前
香蕉觅云应助个性柜子采纳,获得10
1分钟前
amin发布了新的文献求助100
1分钟前
1分钟前
1分钟前
Zeno完成签到 ,获得积分10
1分钟前
歪比巴卜发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5564775
求助须知:如何正确求助?哪些是违规求助? 4649490
关于积分的说明 14689018
捐赠科研通 4591475
什么是DOI,文献DOI怎么找? 2519172
邀请新用户注册赠送积分活动 1491823
关于科研通互助平台的介绍 1462846