清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Genomic prediction of growth traits in scallops using convolutional neural networks

生物 人工智能 卷积神经网络 人口 贝叶斯定理 阿戈皮特恩辐射体 最佳线性无偏预测 机器学习 选择(遗传算法) 模式识别(心理学) 统计 贝叶斯概率 数学 计算机科学 扇贝 生态学 人口学 社会学
作者
Xinghai Zhu,Ping Ni,Qiang Xing,Yangfan Wang,Xiaoting Huang,Xiaoli Hu,Jingjie Hu,Xiao‐Lin Wu,Zhenmin Bao
出处
期刊:Aquaculture [Elsevier]
卷期号:545: 737171-737171 被引量:11
标识
DOI:10.1016/j.aquaculture.2021.737171
摘要

Deep learning neural networks applied to the genomic prediction of complex traits have been of great interest in recent years. Previous studies primarily used simulated phenotypes or/and genotypes in plants and animals. The properties of deep learning models used in genomic selection are not well characterized and not well validated with real datasets. In the present study, we evaluated the performance of a class of deep learning methods called convolutional neural networks (CNNs) in the genomic prediction of four quantitative traits (e.g., shell length, shell height, shell width, and total weight) in a Bay scallop (Argopecten irradians irradians) population. The results were compared with those obtained from two linear models, RR-GBLUP and Bayes B, and multilayer perceptron neural networks (MLPs). One-convolutional layer CNNs with an optimal structure, which was obtained by using AIC or BIC method, had roughly comparable prediction accuracies on the four quantitive traits in the scallop population. Overall, CNNs outperformed RR-GBLUP, Bayes B and MLPs on shell height, shell width and total weight, and performed slightly worse than only Bayes B on shell length. MLPs gave the least accurate predictions on average among the four types of models. Because MLPs had far more parameters to estimate than the two linear models, and their predictions were challenged by the overfitting problem. Genomic prediction accuracy varied with SNP panel size and training population size.The impact of varied marker densities and two GWAS-based scenarios for SNP selection on genomic prediction accuracy was investigated as well. The present results provide evidence that supports the use of convolutional neural networks for genomic prediction of complex traits in scallops, yet the optimal structures of CNNs remained to be exploited in future studies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Moto_Fang完成签到 ,获得积分10
1秒前
棠臻完成签到 ,获得积分10
3秒前
飞龙在天完成签到 ,获得积分10
25秒前
冯老师完成签到 ,获得积分10
27秒前
ZAY完成签到 ,获得积分10
39秒前
46秒前
llllliu发布了新的文献求助10
47秒前
ceeray23发布了新的文献求助20
49秒前
ikouyo完成签到 ,获得积分10
59秒前
棕色垂耳兔完成签到 ,获得积分10
1分钟前
lucinda完成签到 ,获得积分10
1分钟前
Marshall发布了新的文献求助10
1分钟前
1分钟前
NattyPoe应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得30
1分钟前
共享精神应助科研通管家采纳,获得10
1分钟前
NattyPoe应助科研通管家采纳,获得10
1分钟前
璐璐完成签到 ,获得积分10
1分钟前
忒寒碜完成签到,获得积分10
2分钟前
小小完成签到 ,获得积分10
2分钟前
X519664508完成签到,获得积分0
2分钟前
小葡萄完成签到 ,获得积分10
2分钟前
8R60d8应助Ttimer采纳,获得10
2分钟前
勤勤恳恳写论文完成签到 ,获得积分10
2分钟前
lily完成签到 ,获得积分10
2分钟前
秋子骞完成签到 ,获得积分10
2分钟前
Ttimer完成签到,获得积分10
3分钟前
刘刘完成签到 ,获得积分0
3分钟前
lling完成签到 ,获得积分10
3分钟前
naczx完成签到,获得积分0
3分钟前
mzhang2完成签到 ,获得积分10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
Gambu完成签到,获得积分10
4分钟前
wanci应助alluseup采纳,获得10
4分钟前
4分钟前
zw完成签到,获得积分10
4分钟前
doclarrin完成签到 ,获得积分10
4分钟前
大意的火龙果完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789193
求助须知:如何正确求助?哪些是违规求助? 5716616
关于积分的说明 15474328
捐赠科研通 4917087
什么是DOI,文献DOI怎么找? 2646769
邀请新用户注册赠送积分活动 1594442
关于科研通互助平台的介绍 1548904