紧身衣
材料科学
阻燃剂
碳化
极限抗拉强度
复合材料
锥形量热计
极限氧指数
化学工程
烧焦
热解
扫描电子显微镜
量子力学
荧光
物理
工程类
作者
San‐E Zhu,Fen-Dou Wang,Junjie Liu,Lili Wang,Cheng Wang,Anthony Chun Yin Yuen,Timothy Bo Yuan Chen,Imrana I. Kabir,Guan Heng Yeoh,Hongdian Lu,Wei Yang
标识
DOI:10.1016/j.compositesb.2021.109130
摘要
Acrylonitrile-butadiene-styrene (ABS) resin is a commonly used engineering thermoplastic. Nevertheless, the fire toxicity hazards (HCN, NOx, NH3 and CO) generated from the combustion of ABS remains a major concern, especially in building fire scenarios. To address this issue, boron dipyrromethene (BODIPY) modified MXene (Ti3C2Tx) nanosheets were prepared and utilized as a flame retardant for ABS. The loading of 0.5 wt% BODIPY-MXene resulted in the uniform dispersion in ABS. Accordingly, the tensile strength, Young's modulus and elongation at break of ABS/BODIPY-MXene0.5 were improved by 27.8%, 18.6% and 17.9% respectively compared to neat ABS, suggesting the enhanced mechanical properties. The limiting oxygen index (LOI) value was increased from 19.5% for neat ABS to 21.5% and 23.5% for ABS/BODIPY-MXene0.5 and ABS/BODIPY-MXene2.0 benefitted from the rapid carbonization. The cone calorimeter coupled with FTIR analysis showed that the reductions in peak heat release rate (−24.5%), peak smoke production rate (−18.4%), peak concentration of HCN (−33.5%), NO (−22.0%), N2O (−46.6%), NH3 (−76.0%) and CO (−28.8%) were achieved by incorporating 0.5 wt% BODIPY-MXene to ABS in comparison with pure ABS. The improved fire safety properties were primarily attributed to the excellent barrier, free radical capture, and catalytic carbonization effect of BODIPY-MXene nanosheets within ABS matrix.
科研通智能强力驱动
Strongly Powered by AbleSci AI