亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

SepPCNET: Deeping Learning on a 3D Surface Electrostatic Potential Point Cloud for Enhanced Toxicity Classification and Its Application to Suspected Environmental Estrogens

点云 云计算 人工智能 计算机科学 环境科学 环境化学 化学 毒性 操作系统 有机化学
作者
Liguo Wang,Lu Zhao,Xian Liu,Jianjie Fu,Aiqian Zhang
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:55 (14): 9958-9967 被引量:27
标识
DOI:10.1021/acs.est.1c01228
摘要

Deep learning (DL) offers an unprecedented opportunity to revolutionize the landscape of toxicity prediction based on quantitative structure-activity relationship (QSAR) studies in the big data era. However, the structural description in the reported DL-QSAR models is still restricted to the two-dimensional level. Inspired by point clouds, a type of geometric data structure, a novel three-dimensional (3D) molecular surface point cloud with electrostatic potential (SepPC) was proposed to describe chemical structures. Each surface point of a chemical is assigned its 3D coordinate and molecular electrostatic potential. A novel DL architecture SepPCNET was then introduced to directly consume unordered SepPC data for toxicity classification. The SepPCNET model was trained on 1317 chemicals tested in a battery of 18 estrogen receptor-related assays of the ToxCast program. The obtained model recognized the active and inactive chemicals at accuracies of 82.8 and 88.9%, respectively, with a total accuracy of 88.3% on the internal test set and 92.5% on the external test set, which outperformed other up-to-date machine learning models and succeeded in recognizing the difference in the activity of isomers. Additional insights into the toxicity mechanism were also gained by visualizing critical points and extracting data-driven point features of active chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归尘发布了新的文献求助30
18秒前
Raunio完成签到,获得积分10
20秒前
21秒前
38秒前
LJP发布了新的文献求助10
46秒前
Ava应助科研通管家采纳,获得10
50秒前
yuchuan应助科研通管家采纳,获得10
50秒前
yuchuan应助科研通管家采纳,获得10
50秒前
52秒前
iiii发布了新的文献求助10
58秒前
1分钟前
1分钟前
科研通AI6应助LJP采纳,获得10
1分钟前
1分钟前
伽古拉40k完成签到,获得积分10
1分钟前
paperandpen发布了新的文献求助10
1分钟前
MchemG完成签到,获得积分0
1分钟前
LJP完成签到,获得积分10
1分钟前
paperandpen完成签到,获得积分10
1分钟前
zzgpku完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
若谷叻完成签到,获得积分10
2分钟前
Chris发布了新的文献求助10
2分钟前
hll完成签到,获得积分10
2分钟前
Chris完成签到,获得积分10
2分钟前
yuchuan应助科研通管家采纳,获得10
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
无花果应助矮小的祥采纳,获得10
2分钟前
脑洞疼应助优美芸采纳,获得10
2分钟前
三毛完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
矮小的祥发布了新的文献求助10
3分钟前
4分钟前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Video: Lagrangian coherent structures in the flow field of a fluidic oscillator 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5449954
求助须知:如何正确求助?哪些是违规求助? 4557893
关于积分的说明 14265132
捐赠科研通 4481121
什么是DOI,文献DOI怎么找? 2454700
邀请新用户注册赠送积分活动 1445480
关于科研通互助平台的介绍 1421323