Accessing Artificial Intelligence for Clinical Decision-Making

危害 人工智能 形成性评价 医疗保健 计算机科学 临床决策支持系统 机器学习 风险分析(工程) 决策支持系统 医学 心理学 教育学 经济增长 社会心理学 经济
作者
Chris Giordano,Meghan Brennan,Basma Mohamed,Parisa Rashidi,François Modave,Patrick J. Tighe
出处
期刊:Frontiers in digital health [Frontiers Media SA]
卷期号:3 被引量:134
标识
DOI:10.3389/fdgth.2021.645232
摘要

Advancements in computing and data from the near universal acceptance and implementation of electronic health records has been formative for the growth of personalized, automated, and immediate patient care models that were not previously possible. Artificial intelligence (AI) and its subfields of machine learning, reinforcement learning, and deep learning are well-suited to deal with such data. The authors in this paper review current applications of AI in clinical medicine and discuss the most likely future contributions that AI will provide to the healthcare industry. For instance, in response to the need to risk stratify patients, appropriately cultivated and curated data can assist decision-makers in stratifying preoperative patients into risk categories, as well as categorizing the severity of ailments and health for non-operative patients admitted to hospitals. Previous overt, traditional vital signs and laboratory values that are used to signal alarms for an acutely decompensating patient may be replaced by continuously monitoring and updating AI tools that can pick up early imperceptible patterns predicting subtle health deterioration. Furthermore, AI may help overcome challenges with multiple outcome optimization limitations or sequential decision-making protocols that limit individualized patient care. Despite these tremendously helpful advancements, the data sets that AI models train on and develop have the potential for misapplication and thereby create concerns for application bias. Subsequently, the mechanisms governing this disruptive innovation must be understood by clinical decision-makers to prevent unnecessary harm. This need will force physicians to change their educational infrastructure to facilitate understanding AI platforms, modeling, and limitations to best acclimate practice in the age of AI. By performing a thorough narrative review, this paper examines these specific AI applications, limitations, and requisites while reviewing a few examples of major data sets that are being cultivated and curated in the US.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zhou发布了新的文献求助10
刚刚
wxy完成签到,获得积分10
1秒前
1秒前
2秒前
某某发布了新的文献求助10
3秒前
4秒前
小马甲应助S8采纳,获得10
5秒前
ding应助嘻嘻采纳,获得10
6秒前
6秒前
CipherSage应助麦尔哈巴采纳,获得10
6秒前
一介尘埃完成签到 ,获得积分10
7秒前
某某完成签到,获得积分10
9秒前
gmj完成签到,获得积分10
10秒前
chen完成签到 ,获得积分10
10秒前
10秒前
wanci应助hxpxp采纳,获得10
10秒前
lai发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
bkagyin应助漂亮幻莲采纳,获得10
12秒前
12秒前
12秒前
13秒前
13秒前
温婉的惜文完成签到 ,获得积分10
13秒前
孙大圣应助生动的问旋采纳,获得10
15秒前
陈乐宁2024发布了新的文献求助10
15秒前
16秒前
Cornelius发布了新的文献求助30
16秒前
16秒前
16秒前
万能图书馆应助本之上课采纳,获得10
16秒前
眼睛大的初翠完成签到,获得积分10
16秒前
柚子发布了新的文献求助10
17秒前
彦希完成签到 ,获得积分10
17秒前
18秒前
19秒前
455完成签到,获得积分20
19秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135677
求助须知:如何正确求助?哪些是违规求助? 2786507
关于积分的说明 7777976
捐赠科研通 2442633
什么是DOI,文献DOI怎么找? 1298612
科研通“疑难数据库(出版商)”最低求助积分说明 625205
版权声明 600847