Reconstructive Sequence-Graph Network for Video Summarization

自动汇总 计算机科学 人工智能 图形 注意力网络 弹丸 序列(生物学) 卷积神经网络 发电机(电路理论) 循环神经网络 模式识别(心理学) 帧(网络) 数据挖掘 计算机视觉 人工神经网络 理论计算机科学 功率(物理) 化学 物理 有机化学 量子力学 生物 遗传学 电信
作者
Bin Zhao,Haopeng Li,Xiaoqiang Lu,Xuelong Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-1 被引量:82
标识
DOI:10.1109/tpami.2021.3072117
摘要

Exploiting the inner-shot and inter-shot dependencies is essential for key-shot based video summarization. Current approaches mainly devote to modeling the video as a frame sequence by recurrent neural networks. However, one potential limitation of the sequence models is that they focus on capturing local neighborhood dependencies while the high-order dependencies in long distance are not fully exploited. In general, the frames in each shot record a certain activity and vary smoothly over time, but the multi-hop relationships occur frequently among shots. In this case, both the local and global dependencies are important for understanding the video content. Motivated by this point, we propose a reconstructive sequence-graph network (RSGN) to encode the frames and shots as sequence and graph hierarchically, where the frame-level dependencies are encoded by long short-term memory (LSTM), and the shot-level dependencies are captured by the graph convolutional network (GCN). Then, the videos are summarized by exploiting both the local and global dependencies among shots. Besides, a reconstructor is developed to reward the summary generator, so that the generator can be optimized in an unsupervised manner, which can avert the lack of annotated data in video summarization. Furthermore, under the guidance of reconstruction loss, the predicted summary can better preserve the main video content and shot-level dependencies. Practically, the experimental results on three popular datasets (i.e., SumMe, TVsum and VTW) have demonstrated the superiority of our proposed approach to the summarization task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
田様应助safire采纳,获得10
2秒前
liling完成签到,获得积分10
2秒前
2秒前
害羞耷发布了新的文献求助10
5秒前
sophia完成签到 ,获得积分10
5秒前
7秒前
钼yanghua发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助50
8秒前
12秒前
wuhanjoey发布了新的文献求助10
12秒前
14秒前
酷波er应助暴躁的白凡采纳,获得10
14秒前
飞先生发布了新的文献求助10
16秒前
18秒前
共享精神应助NEO采纳,获得10
19秒前
阳光的静白完成签到,获得积分10
20秒前
addd发布了新的文献求助10
21秒前
大模型应助yangbinsci0827采纳,获得10
21秒前
24秒前
十一发布了新的文献求助10
24秒前
27秒前
HXX发布了新的文献求助30
27秒前
28秒前
紫紫发布了新的文献求助10
28秒前
29秒前
落后海蓝完成签到,获得积分10
30秒前
pluto应助faye采纳,获得10
30秒前
31秒前
风中尔竹发布了新的文献求助10
31秒前
777发布了新的文献求助10
32秒前
32秒前
32秒前
33秒前
33秒前
河马发布了新的文献求助10
33秒前
36秒前
酒酿是也发布了新的文献求助10
36秒前
小兔子乖乖完成签到,获得积分10
37秒前
快乐人杰发布了新的文献求助10
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952529
求助须知:如何正确求助?哪些是违规求助? 3497949
关于积分的说明 11089475
捐赠科研通 3228442
什么是DOI,文献DOI怎么找? 1784930
邀请新用户注册赠送积分活动 868992
科研通“疑难数据库(出版商)”最低求助积分说明 801309