Reconstructive Sequence-Graph Network for Video Summarization

自动汇总 计算机科学 人工智能 图形 注意力网络 弹丸 序列(生物学) 卷积神经网络 发电机(电路理论) 循环神经网络 模式识别(心理学) 帧(网络) 数据挖掘 计算机视觉 人工神经网络 理论计算机科学 功率(物理) 化学 物理 有机化学 量子力学 生物 遗传学 电信
作者
Bin Zhao,Haopeng Li,Xiaoqiang Lu,Xuelong Li
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:82
标识
DOI:10.1109/tpami.2021.3072117
摘要

Exploiting the inner-shot and inter-shot dependencies is essential for key-shot based video summarization. Current approaches mainly devote to modeling the video as a frame sequence by recurrent neural networks. However, one potential limitation of the sequence models is that they focus on capturing local neighborhood dependencies while the high-order dependencies in long distance are not fully exploited. In general, the frames in each shot record a certain activity and vary smoothly over time, but the multi-hop relationships occur frequently among shots. In this case, both the local and global dependencies are important for understanding the video content. Motivated by this point, we propose a reconstructive sequence-graph network (RSGN) to encode the frames and shots as sequence and graph hierarchically, where the frame-level dependencies are encoded by long short-term memory (LSTM), and the shot-level dependencies are captured by the graph convolutional network (GCN). Then, the videos are summarized by exploiting both the local and global dependencies among shots. Besides, a reconstructor is developed to reward the summary generator, so that the generator can be optimized in an unsupervised manner, which can avert the lack of annotated data in video summarization. Furthermore, under the guidance of reconstruction loss, the predicted summary can better preserve the main video content and shot-level dependencies. Practically, the experimental results on three popular datasets (i.e., SumMe, TVsum and VTW) have demonstrated the superiority of our proposed approach to the summarization task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小憩完成签到,获得积分10
刚刚
南乔发布了新的文献求助10
刚刚
张静静发布了新的文献求助10
1秒前
云儿完成签到,获得积分10
1秒前
淡淡的洋葱完成签到,获得积分10
1秒前
小洲王先生完成签到,获得积分10
2秒前
2秒前
dd完成签到,获得积分10
2秒前
2秒前
3秒前
CCL应助kk2024采纳,获得50
3秒前
wjs0406完成签到,获得积分10
3秒前
自爱悠然发布了新的文献求助10
3秒前
贺雪完成签到,获得积分10
4秒前
4秒前
玉yu发布了新的文献求助10
5秒前
深情秋刀鱼完成签到,获得积分10
5秒前
星辰大海应助冷酷尔琴采纳,获得10
5秒前
5秒前
5秒前
隐形的大有完成签到,获得积分10
6秒前
浩浩大人发布了新的文献求助10
6秒前
buno应助圈圈采纳,获得10
6秒前
7秒前
隐形曼青应助Bo采纳,获得10
7秒前
西宁阿应助啵乐乐采纳,获得10
7秒前
7秒前
阿仔爱学习完成签到,获得积分10
7秒前
为喵驾车的月亮完成签到,获得积分20
8秒前
8秒前
membrane应助Mon_zh采纳,获得20
8秒前
9秒前
9秒前
hhy发布了新的文献求助10
9秒前
故意的傲玉应助结实煎饼采纳,获得200
10秒前
乐观的一一完成签到,获得积分10
10秒前
zwzw1314完成签到,获得积分10
10秒前
001发布了新的文献求助10
11秒前
FFFFFFF应助平淡南霜采纳,获得10
11秒前
Mottri发布了新的文献求助10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740