Optimal pricing and ordering decisions for a retailer using multiple discounts

运筹学 微观经济学 业务 计算机科学 运营管理 经济 数学
作者
Shouyu Ma,Zied Jemaï,Qingguo Bai
出处
期刊:European Journal of Operational Research [Elsevier]
卷期号:299 (3): 1177-1192 被引量:20
标识
DOI:10.1016/j.ejor.2021.10.004
摘要

• We optimise the selling prices for a multi-discount newsboy problem. • We show the characteristics of the optimal price structure to preset. • Our method yields remarkable benefits in both static and dynamic pricing situations. • We provide a robust method for the case where partial demand information is known. Ordering and pricing are two crucial decisions for retailers and are widely studied. We focus on a situation where a retailer uses successive discounts, and we study the joint decision of the order quantity and selling prices. Earlier works often simplify this problem by assuming that demands in the discount periods are deterministic and independent, which is unrealistic. This work proves that there exists a unique optimal order quantity when the demands are stochastic and correlated. In determining the optimal order quantity and regular selling price for the multi-discount problem, earlier studies often assume special price structures, for example, equally spaced discount prices. This study optimises the selling prices and proves that the discount schemes used in earlier multi-discount works are suboptimal. In this study, both hierarchical and joint optimisation methods are derived for when the demand distribution information is known. In the static pricing situation, using small discounts in the beginning and marking down with an accelerating increase rate can benefit the retailer instead of discounting with a constantly increasing rate. Numerical examples show that the performance of the hierarchical method, often used in earlier one-discount models, depends on the profit margin and the demand correlation ratio in a multi-discount situation. Compared with the hierarchical method, the joint optimisation method yields more benefits in profit in both static and dynamic pricing situations when the profit margin is low and demand correlation is high. We also provide a robust optimisation method for the partial-demand-information case in this study. Other insights for managers are also provided.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
piao完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
虚心柠檬完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
小月Anna完成签到,获得积分10
7秒前
Jasper应助机灵水卉采纳,获得10
8秒前
8秒前
azhar发布了新的文献求助10
9秒前
9秒前
11秒前
11秒前
崔同学发布了新的文献求助10
12秒前
13秒前
徐蹇发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
量子星尘发布了新的文献求助10
17秒前
充电宝应助回火青年采纳,获得30
17秒前
ding应助索隆大人采纳,获得10
17秒前
17秒前
18秒前
19秒前
19秒前
SH发布了新的文献求助10
20秒前
大模型应助简单的夜春采纳,获得10
22秒前
22秒前
annie完成签到,获得积分10
23秒前
lsx发布了新的文献求助10
23秒前
隐形曼青应助沉默的念柏采纳,获得10
24秒前
之水发布了新的文献求助10
25秒前
量子星尘发布了新的文献求助10
25秒前
万能图书馆应助青枝采纳,获得10
25秒前
李爱国应助白白采纳,获得10
26秒前
科研通AI6.1应助science采纳,获得10
26秒前
开心的秋天完成签到 ,获得积分10
27秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5752230
求助须知:如何正确求助?哪些是违规求助? 5473222
关于积分的说明 15373340
捐赠科研通 4891308
什么是DOI,文献DOI怎么找? 2630334
邀请新用户注册赠送积分活动 1578517
关于科研通互助平台的介绍 1534476