计算机科学
进化算法
进化计算
领域(数学)
算法
分布估计算法
计算
数学优化
理论计算机科学
人工智能
数学
纯数学
作者
Benjamin Doerr,Frank Neumann
出处
期刊:ACM transactions on evolutionary learning
[Association for Computing Machinery]
日期:2021-10-13
卷期号:1 (4): 1-43
被引量:25
摘要
The theory of evolutionary computation for discrete search spaces has made significant progress in the last ten years. This survey summarizes some of the most important recent results in this research area. It discusses fine-grained models of runtime analysis of evolutionary algorithms, highlights recent theoretical insights on parameter tuning and parameter control, and summarizes the latest advances for stochastic and dynamic problems. We regard how evolutionary algorithms optimize submodular functions and we give an overview over the large body of recent results on estimation of distribution algorithms. Finally, we present the state of the art of drift analysis, one of the most powerful analysis technique developed in this field.
科研通智能强力驱动
Strongly Powered by AbleSci AI