已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Real-Effort Incentives in Online Labor Markets: Punishments and Rewards for Individuals and Groups

激励 劳动经济学 业务 经济 微观经济学
作者
Matthew J. Hashim,Jesse Bockstedt
出处
期刊:Management Information Systems Quarterly [MIS Quarterly]
卷期号:48 (1): 299-320
标识
DOI:10.25300/misq/2023/15166
摘要

Online labor markets and the humans that power them serve a critical role in the advancement of artificial intelligence and supervised machine learning via the creation of useful training datasets. The use of human effort in online labor markets is not enough, however, as a key factor is understanding the possible interventions that market operators can leverage to incentivize human effort among their labor force. We propose that platforms could implement mechanisms such as rewards or punishments at individual or group levels to incentivize real-effort and output. We apply our interventions using a collaborative image tagging experiment—a folksonomy—and the results provide interesting insights and nonobvious consequences. On average, interventions applied at the group level outperformed interventions applied at the individual level. Punishing the group provided the most controversial incentive strategy and provided a nonobvious significant improvement in effort. Rewarding or sanctioning an individual had similar effects on average, with both treatments leading to significant increases in effort post-intervention. In contrast to predictions, sanctioning appears to have significantly motivated those that were punished. Overall, the interventions applied in our real-effort collaborative image tagging experiment had a significant impact on behavior, which provides guidance for online labor market operators and the use of incentives in the creation of labeled machine learning training datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玲珑油豆腐完成签到,获得积分10
6秒前
laz完成签到,获得积分10
8秒前
10秒前
Ail完成签到,获得积分10
10秒前
无辜的惜寒完成签到 ,获得积分10
10秒前
11秒前
12秒前
NIER完成签到,获得积分10
13秒前
13秒前
LEE发布了新的文献求助20
14秒前
P88JNG发布了新的文献求助10
15秒前
xdy发布了新的文献求助10
17秒前
完美世界应助夕荀采纳,获得10
18秒前
19秒前
21秒前
余鱼鱼完成签到,获得积分10
21秒前
共享精神应助隐形的糖豆采纳,获得10
22秒前
22秒前
Sarah发布了新的文献求助30
25秒前
Kirin发布了新的文献求助10
26秒前
陈民发布了新的文献求助10
27秒前
29秒前
wanci应助LEE采纳,获得10
30秒前
Akim应助maohui采纳,获得10
30秒前
熹林向日葵完成签到,获得积分10
30秒前
30秒前
31秒前
脑洞疼应助清爽灰狼采纳,获得10
33秒前
华仔应助cxzydhcg采纳,获得20
33秒前
杨y123发布了新的文献求助10
34秒前
Sarah完成签到,获得积分10
34秒前
等风来1234发布了新的文献求助20
35秒前
kekefefe完成签到,获得积分10
36秒前
Fancy发布了新的文献求助10
37秒前
39秒前
40秒前
脑洞疼应助陈民采纳,获得10
42秒前
Snoopy发布了新的文献求助10
43秒前
852应助杨y123采纳,获得10
43秒前
清爽灰狼发布了新的文献求助10
44秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150321
求助须知:如何正确求助?哪些是违规求助? 2801489
关于积分的说明 7844908
捐赠科研通 2458975
什么是DOI,文献DOI怎么找? 1308883
科研通“疑难数据库(出版商)”最低求助积分说明 628582
版权声明 601727