斑点图案
散斑噪声
水准点(测量)
计算机科学
残余物
全息术
人工智能
噪音(视频)
相(物质)
模式识别(心理学)
航程(航空)
噪声数据
计算机视觉
算法
图像(数学)
光学
物理
工程类
航空航天工程
量子力学
地理
大地测量学
作者
Marie Tahon,Pascal Picart,Pascal Picart
标识
DOI:10.1364/dh.2021.dth1d.2
摘要
This paper addresses the problem of phase images corrupted with speckle noise. DnCNN residual networks with different depths were built and trained with various holographic noisy phase data. All models are evaluated in terms of phase error with HOLODEEP benchmark data and with 3 unseen images corresponding to different experimental conditions. The best results are obtained using a network with only 4 residual blocks, and trained with a wide range of noisy speckle patterns.
科研通智能强力驱动
Strongly Powered by AbleSci AI