Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries

材料科学 电解质 制作 陶瓷 锂(药物) 阴极 电极 纳米技术 化学工程 快离子导体 阳极 储能 复合材料 电气工程 化学 医学 功率(物理) 替代医学 物理 物理化学 病理 量子力学 内分泌学 工程类
作者
Yiran Xiao,Kostiantyn Turcheniuk,Aashray Narla,Ah‐Young Song,Xiaolei Ren,Alexandre Magasinski,Ayush Jain,Shirley Huang,Haewon Lee,Gleb Yushin
出处
期刊:Nature Materials [Nature Portfolio]
卷期号:20 (7): 984-990 被引量:147
标识
DOI:10.1038/s41563-021-00943-2
摘要

All-solid-state lithium (Li) metal and lithium-ion batteries (ASSLBs) with inorganic solid-state electrolytes offer improved safety for electric vehicles and other applications. However, current inorganic ASSLB manufacturing technology suffers from high cost, excessive amounts of solid-state electrolyte and conductive additives, and low attainable volumetric energy density. Such a fabrication method involves separate fabrications of sintered ceramic solid-state electrolyte membranes and ASSLB electrodes, which are then carefully stacked and sintered together in a precisely controlled environment. Here we report a disruptive manufacturing technology that offers reduced manufacturing costs and improved volumetric energy density in all solid cells. Our approach mimics the low-cost fabrication of commercial Li-ion cells with liquid electrolytes, except that we utilize solid-state electrolytes with low melting points that are infiltrated into dense, thermally stable electrodes at moderately elevated temperatures (~300 °C or below) in a liquid state, and which then solidify during cooling. Nearly the same commercial equipment could be used for electrode and cell manufacturing, which substantially reduces a barrier for industry adoption. This energy-efficient method was used to fabricate inorganic ASSLBs with LiNi0.33Mn0.33Co0.33O2 cathodes and both Li4Ti5O12 and graphite anodes. The promising performance characteristics of such cells open new opportunities for the accelerated adoption of ASSLBs for safer electric transportation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Isi完成签到,获得积分10
2秒前
脑洞疼应助alan采纳,获得10
3秒前
3秒前
GGbong完成签到 ,获得积分10
5秒前
852应助祗想静静嘚采纳,获得10
5秒前
kkx发布了新的文献求助10
6秒前
Cactus应助yyy采纳,获得10
8秒前
Qiaoclin完成签到,获得积分10
8秒前
小文子完成签到,获得积分10
9秒前
yy应助Enoch采纳,获得10
11秒前
zhzike完成签到,获得积分10
11秒前
11秒前
13秒前
笨笨伟泽完成签到,获得积分20
14秒前
英姑应助久9采纳,获得10
15秒前
科研通AI5应助惠惠采纳,获得10
15秒前
打打应助平淡的友易采纳,获得10
16秒前
bear应助会撒娇的如音采纳,获得30
17秒前
小新完成签到 ,获得积分10
17秒前
19秒前
Zzzzan发布了新的文献求助10
19秒前
19秒前
liyu发布了新的文献求助10
19秒前
苹果王子6699完成签到 ,获得积分10
21秒前
23秒前
咕噜发布了新的文献求助10
24秒前
朱朱完成签到 ,获得积分10
24秒前
我是老大应助余偲采纳,获得10
25秒前
26秒前
AsingOne发布了新的文献求助10
26秒前
天天快乐应助cxr采纳,获得10
28秒前
冷酷芝完成签到,获得积分10
28秒前
29秒前
MMZMJY完成签到,获得积分10
29秒前
29秒前
科研通AI5应助Zzzzan采纳,获得10
30秒前
久9发布了新的文献求助10
31秒前
科研通AI5应助安详怀蕾采纳,获得10
33秒前
司徒诗蕾发布了新的文献求助10
33秒前
34秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281244
关于积分的说明 10023902
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644908
邀请新用户注册赠送积分活动 782421
科研通“疑难数据库(出版商)”最低求助积分说明 749792