A survey on computational models for predicting protein–protein interactions

计算机科学 计算生物学 人工智能 生物
作者
Lun Hu,Xiaojuan Wang,Yu‐An Huang,Pengwei Hu,Zhu‐Hong You
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:22 (5) 被引量:119
标识
DOI:10.1093/bib/bbab036
摘要

Abstract Proteins interact with each other to play critical roles in many biological processes in cells. Although promising, laboratory experiments usually suffer from the disadvantages of being time-consuming and labor-intensive. The results obtained are often not robust and considerably uncertain. Due recently to advances in high-throughput technologies, a large amount of proteomics data has been collected and this presents a significant opportunity and also a challenge to develop computational models to predict protein–protein interactions (PPIs) based on these data. In this paper, we present a comprehensive survey of the recent efforts that have been made towards the development of effective computational models for PPI prediction. The survey introduces the algorithms that can be used to learn computational models for predicting PPIs, and it classifies these models into different categories. To understand their relative merits, the paper discusses different validation schemes and metrics to evaluate the prediction performance. Biological databases that are commonly used in different experiments for performance comparison are also described and their use in a series of extensive experiments to compare different prediction models are discussed. Finally, we present some open issues in PPI prediction for future work. We explain how the performance of PPI prediction can be improved if these issues are effectively tackled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
丘比特应助Eureka采纳,获得10
3秒前
一只小松鼠关注了科研通微信公众号
3秒前
5秒前
搜集达人应助小岛采纳,获得10
5秒前
卡皮巴拉发布了新的文献求助10
5秒前
活泼的熊猫完成签到,获得积分20
6秒前
7秒前
8秒前
9秒前
JJJJJin应助三金采纳,获得50
10秒前
10秒前
11秒前
12秒前
14秒前
15秒前
16秒前
花凉发布了新的文献求助10
17秒前
文献小松鼠完成签到,获得积分10
17秒前
山真页完成签到,获得积分10
17秒前
科研通AI2S应助微雨初晴采纳,获得10
19秒前
19秒前
真知灼见发布了新的文献求助10
20秒前
20秒前
lulu发布了新的文献求助10
20秒前
8R60d8应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
李健应助科研通管家采纳,获得10
20秒前
linghanlan应助科研通管家采纳,获得20
20秒前
无餍应助科研通管家采纳,获得10
21秒前
so000应助科研通管家采纳,获得200
21秒前
8R60d8应助科研通管家采纳,获得10
21秒前
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
思源应助科研通管家采纳,获得10
21秒前
英俊的铭应助科研通管家采纳,获得10
21秒前
8R60d8应助科研通管家采纳,获得10
21秒前
无餍应助科研通管家采纳,获得10
21秒前
今后应助科研通管家采纳,获得10
21秒前
藤椒辣鱼应助科研通管家采纳,获得10
21秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459147
求助须知:如何正确求助?哪些是违规求助? 3053698
关于积分的说明 9037829
捐赠科研通 2742963
什么是DOI,文献DOI怎么找? 1504592
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694644