蛋白激酶B
PI3K/AKT/mTOR通路
成骨细胞
细胞凋亡
化学
葛兰素史克-3
膜联蛋白
碱性磷酸酶
细胞生物学
信号转导
内科学
内分泌学
分子生物学
生物
生物化学
医学
酶
体外
作者
Shuang Deng,Guo Dai,Sen Chen,Zhigang Nie,Jianlin Zhou,Hongsong Fang,Hao Peng
标识
DOI:10.1016/j.biopha.2018.11.103
摘要
Osteoblasts play important roles in the process of osteogenesis and prevention of osteonecrosis. Dexamethasone (Dex), a type of glucocorticoids (GCs), induces apoptosis of osteoblasts and leads to the occurrence of non-traumatic osteonecrosis. This study aimed to explore the effects of phosphatidylinositol 3-kinase/Protein kinase 3 (PI3K/AKT) and glycogen synthase kinase 3β (GSK3β) on Dex-induced osteoblasts apoptosis. Viabilities, proliferation, and apoptosis of primary osteoblasts and pre-osteoblast MC3T3-E1 cells after Dex treatment were detected using cell counting kit-8 (CCK-8) assay, 5-bromo-2′-deoxyuridine (BrdU) incorporation assay, FITC-Annexin V/PI staining and western blotting, respectively. 2′,7′-Dichlorodihydrofluorescein diacetate (DCFH-DA) staining was performed to measure the intracellular reactive oxygen species (ROS) levels after Dex treatment. N-acetyl-l-cysteine (NAC) was used as ROS scavenger in this research. The expressions of PI3K/AKT and GSK3β in osteoblasts and MC3T3-E1 cells after Dex treatment were analyzed using western blotting and qRT-PCR, respectively. Then the effects of GSK3β knockdown on Dex-induced apoptosis of osteoblasts were explored. Alkaline phosphatase (ALP) activity assay was used to detect the role of Dex in regulating ALP activity. Dex remarkably inhibited proliferation and induced apoptosis of osteoblasts and MC3T3-E1 cells. Dex potentially attenuated the osteoblast differentiation. The intracellular ROS levels were significantly increased after Dex treatment. Dex suppressed the activation of PI3K/AKT pathway in osteoblasts and MC3T3-E1 cells by down-regulating the expressions of p-PI3K and p-AKT. The expressions of GSK3β in osteoblasts and MC3T3-E1 cells were obviously up-regulated after Dex treatment. Knockdown of GSK3β alleviated Dex-induced osteoblast and MC3T3-E1 cell apoptosis by decreasing the expressions of Bax, cleaved-caspase 3, cleaved-caspase 9 and increasing the expression of Bcl-2. Our research verified that Dex induced osteoblasts apoptosis by ROS-PI3K/AKT/GSK3β signaling pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI