Injectable, long-acting PLGA formulations: Analyzing PLGA and understanding microparticle formation

PLGA公司 微粒 化学 药物输送 食品药品监督管理局 纳米技术 药理学 化学工程 医学 材料科学 有机化学 生物化学 体外 工程类
作者
Kinam Park,Sarah Skidmore,Justin Hadar,John Garner,Haesun Park,Andrew Otte,Bong Kwan Soh,Gwangheum Yoon,YU Di-jia,Yeonhee Yun,Byung Kook Lee,Xiaohui Jiang,Yan Wang
出处
期刊:Journal of Controlled Release [Elsevier]
卷期号:304: 125-134 被引量:350
标识
DOI:10.1016/j.jconrel.2019.05.003
摘要

Injectable, long-acting depot formulations based on poly(lactide-co-glycolide) (PLGA) have been used clinically since 1989. Despite 30 years of development, however, there are only 19 different drugs in PLGA formulations approved by the U.S. Food and Drug Administration (FDA). The difficulty in developing depot formulations stems in large part from the lack of a clear molecular understanding of PLGA polymers and a mechanistic understanding of PLGA microparticles formation. The difficulty is readily apparent by the absence of approved PLGA-based generic products, limiting access to affordable medicines to all patients. PLGA has been traditionally characterized by its molecular weight, lactide:glycolide (L:G) ratio, and end group. Characterization of non-linear PLGA, such as star-shaped glucose-PLGA, has been difficult due to the shortcomings in analytical methods typically used for PLGA. In addition, separation of a mixture of different PLGAs has not been previously identified, especially when only their L:G ratios are different while the molecular weights are the same. New analytical methods were developed to determine the branch number of star-shaped PLGAs, and to separate PLGAs based on L:G ratios regardless of the molecular weight. A deeper understanding of complex PLGA formulations can be achieved with these new characterization methods. Such methods are important for further development of not only PLGA depot formulations with controllable drug release kinetics, but also generic formulations of current brand-name products.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十三完成签到 ,获得积分10
刚刚
刚刚
给我点光环完成签到,获得积分10
1秒前
月yue发布了新的文献求助10
2秒前
Artorias发布了新的文献求助20
2秒前
2秒前
Wang完成签到,获得积分10
2秒前
3秒前
caiia完成签到,获得积分10
3秒前
迟歌完成签到,获得积分10
3秒前
Son4904发布了新的文献求助30
3秒前
Genius发布了新的文献求助10
4秒前
4秒前
5秒前
ltupup完成签到 ,获得积分10
5秒前
秀丽的盈发布了新的文献求助10
6秒前
6秒前
情怀应助大胆易巧采纳,获得10
7秒前
7秒前
8秒前
8秒前
海绵宝宝发布了新的文献求助10
9秒前
云蓝完成签到 ,获得积分10
9秒前
迟歌发布了新的文献求助10
10秒前
lagom发布了新的文献求助10
10秒前
10秒前
妮儿完成签到,获得积分10
11秒前
12秒前
坦率灵槐应助123采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
辛勤秋双发布了新的文献求助10
13秒前
13秒前
炙热之桃完成签到,获得积分10
14秒前
15秒前
Hello应助饲料批发采纳,获得10
16秒前
波西米亚完成签到,获得积分10
16秒前
16秒前
椰子发布了新的文献求助10
16秒前
Abraham发布了新的文献求助10
17秒前
坦率灵槐应助无心的尔阳采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5648780
求助须知:如何正确求助?哪些是违规求助? 4776351
关于积分的说明 15045465
捐赠科研通 4807646
什么是DOI,文献DOI怎么找? 2571009
邀请新用户注册赠送积分活动 1527687
关于科研通互助平台的介绍 1486590