电容
超级电容器
假电容器
假电容
材料科学
电解质
电容器
双电层电容器
储能
电解电容器
法拉第效率
电极
介电谱
分析化学(期刊)
循环伏安法
微分电容
光电子学
电化学
纳米技术
电气工程
电压
化学
热力学
功率(物理)
物理
色谱法
工程类
物理化学
作者
Keir Adams,John Mallows,Tianyue Li,Dimitrios K. Kampouris,Job H. J. Thijssen,Neil Robertson
出处
期刊:JPhys energy
[IOP Publishing]
日期:2019-05-20
卷期号:1 (3): 034001-034001
被引量:19
标识
DOI:10.1088/2515-7655/ab22d7
摘要
Abstract Supercapacitors are well-known as promising energy storage devices capable of bridging the gap between conventional electrolytic capacitors and batteries to deliver both high power and energy densities for applications in electric vehicles and a smart energy grid. However, many reported instances of high-capacitance pseudocapacitors employ strong Faradaic reactions that hinder fast charge–discharge cycles and long-term stability, limiting their commercial viability. In this study, we utilise an economical and solution-processable procedure to fabricate a Cs 3 Bi 2 I 9 -based symmetric supercapacitor employing both electric double layer capacitance and pseudocapacitance with an aqueous NaClO 4 electrolyte to deliver an outstanding device areal capacitance of 2.4 F cm −2 and specific capacitance of 280 F g −1 . The Cs 3 Bi 2 I 9 device achieves an excellent 88% capacitance retention after 5000 charge–discharge cycles, proving its long-term cycle stability and promise as a practical supercapacitor. We characterise the time-dependent charge storage mechanisms through cyclic voltammetry and electrochemical impedance spectroscopy to find that electrostatic charge accumulation predominates at high potentials (0.3–0.6 V) whereas weak, Faradaic charge adsorption and pore penetration bolster charge storage at lower potentials (0.0–0.2 V).
科研通智能强力驱动
Strongly Powered by AbleSci AI