药物输送
神经干细胞
膜
材料科学
涂层
神经组织工程
细胞
纳米颗粒
纳米技术
药理学
生物物理学
生物医学工程
组织工程
干细胞
化学
细胞生物学
医学
生物化学
生物
作者
Junning Ma,Shenqi Zhang,Jun Liu,Fuyao Liu,F. Du,Miao Li,Ann T. Chen,Youmei Bao,Hee‐Won Suh,Jonathan Avery,Gang Deng,Yu‐Dong Zhou,Peng Wu,Kevin N. Sheth,Haijun Wang,Jiangbing Zhou
出处
期刊:Small
[Wiley]
日期:2019-07-10
卷期号:15 (35)
被引量:116
标识
DOI:10.1002/smll.201902011
摘要
Abstract Cell membrane coating has recently emerged as a promising biomimetic approach to engineering nanoparticles (NPs) for targeted drug delivery. However, simple cell membrane coating may not meet the need for efficient drug delivery to the brain. Here, a novel molecular engineering strategy to modify the surface of NPs with a cell membrane coating for enhanced brain penetration is reported. By using poly(lactic‐ co ‐glycolic) acid NPs as a model, it is shown that delivery of NPs to the ischemic brain is enhanced through surface coating with the membrane of neural stem cells (NSCs), and the delivery efficiency can be further increased using membrane isolated from NSCs engineered for overexpression of CXCR4. It is found that this enhancement is mediated by the chemotactic interaction of CXCR4 with SDF‐1, which is enriched in the ischemic microenvironment. It is demonstrated that the resulting CXCR4‐overexpressing membrane‐coated NPs, termed CMNPs, significantly augment the efficacy of glyburide, an anti‐edema agent, for stroke treatment. The study suggests a new approach to improving drug delivery to the ischemic brain and establishes a novel formulation of glyburide that can be potentially translated into clinical applications to improve management of human patients with stroke.
科研通智能强力驱动
Strongly Powered by AbleSci AI