塔菲尔方程
过电位
材料科学
电催化剂
电解水
制氢
电解
碱性水电解
铂金
分解水
析氧
离解(化学)
氢
解吸
碱金属
无机化学
化学工程
动力学
密度泛函理论
氨生产
非阻塞I/O
电极
催化作用
作者
Tao Zhang,Kena Yang,Cheng Wang,Shanyu Li,Qiqi Zhang,Xuejiao Chang,Jun‐Tao Li,Simo Li,Shuangfeng Jia,Jianbo Wang,Lei Fu
标识
DOI:10.1002/aenm.201801690
摘要
Abstract A number of non‐noble catalysts are developed for hydrogen production via acidic water electrolysis. Nevertheless, for the more economical alkaline hydrogen generation, the restricted kinetics of the water dissociation Volmer step along with its following proton recombination Tafel step for these non‐noble electrocatalysts generally lead to sluggish hydrogen‐production process. Here, a facile method is designed to nest nanometric Ni 5 P 4 clusters on NiCo 2 O 4 (achieving Ni 5 P 4 @NiCo 2 O 4 ) by a phosphating process of NiO clusters on NiCo 2 O 4 . Acting as a high‐efficiency electrode for alkaline water electrolysis, the Ni 5 P 4 @NiCo 2 O 4 can efficiently and preferentially convert H 2 O to H 2 with a low overpotential of 27 mV at 10 mA cm −2 and the Tafel slope of 27 mV dec −1 , which are comparable to the results for platinum and superior than those of the state‐of‐the‐art platinum‐free electrocatalysts. Density functional theory calculations confirm that NiCo 2 O 4 species exhibit a higher ability to electrolyze water into H* intermediate and then Ni 5 P 4 clusters facilitate the subsequent desorption of the H 2 products. Profiting from the promoted kinetic steps, the Ni 5 P 4 @NiCo 2 O 4 electrocatalyst is promising for scalable alkaline hydrogen production.
科研通智能强力驱动
Strongly Powered by AbleSci AI