Characterization and discrimination of selected China's domestic pork using an LC-MS-based lipidomics approach

脂类学 食品科学 色谱法 多元统计 化学 线性判别分析 代谢组学 生物 脂质体 数学 统计 生物化学
作者
Si Mi,Ke Shang,Xia Li,Chunhui Zhang,Ji-Qian Liu,De-Qiong Huang
出处
期刊:Food Control [Elsevier]
卷期号:100: 305-314 被引量:94
标识
DOI:10.1016/j.foodcont.2019.02.001
摘要

A lipidomics study using liquid chromatography-tandem mass spectrometry and multivariate statistics was conducted in this work to discriminate raw pork meat. A total of 1180 lipid species were identified in the studied pork samples. Four, three and eight lipids were determined as potential discriminatory markers for the five cuts (shoulder, rump, loin, shank and belly) of Tibetan, Jilin and Sanmenxia black pigs, respectively. Distinct lipidomic fingerprints of Tibetan, Jilin and Sanmenxia pork were obtained and they were clearly separated into three clusters by partial least squares discriminant analysis (PLS-DA). The developed PLS-DA model (R2X = 0.603, R2Y = 0.861 and Q2 = 0.752) enables a 91.1% correct classification of pork samples. One-hundred variables, including 61 glycerolipids, 17 glycerophospholipids, 4 sterol lipids, 2 sphingolipids, 3 polyketides, 7 fatty acyls and 6 prenol lipids, were found to have high potential (variable importance in projection value > 1, p-value<0.05) to differentiate Tibetan, Jilin and Sanmenxia pork meat. The current data set will facilitate a better understanding of the nutritional values of the investigated pork and can be expanded to a larger sample size for lipid marker validation. Our findings demonstrate that lipidomic analysis together with multivariate statistics is a promising approach for the differentiation of China's domestic pork.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
季生完成签到,获得积分10
2秒前
徐徐完成签到,获得积分10
2秒前
3秒前
3秒前
haku完成签到,获得积分10
5秒前
可爱的函函应助laodie采纳,获得10
7秒前
Singularity应助忆楠采纳,获得10
8秒前
9秒前
请叫我风吹麦浪应助PengHu采纳,获得30
10秒前
jjjjjj完成签到,获得积分10
10秒前
凝子老师发布了新的文献求助10
12秒前
12秒前
橙子fy16_发布了新的文献求助10
14秒前
cookie完成签到,获得积分10
14秒前
柒柒的小熊完成签到,获得积分10
15秒前
15秒前
Hello应助萌之痴痴采纳,获得10
16秒前
hahaer完成签到,获得积分10
18秒前
领导范儿应助失眠虔纹采纳,获得10
19秒前
20秒前
Owen应助凝子老师采纳,获得10
23秒前
23秒前
南宫炽滔完成签到 ,获得积分10
25秒前
25秒前
丘比特应助飞羽采纳,获得10
26秒前
沙拉发布了新的文献求助10
26秒前
27秒前
28秒前
椰子糖完成签到 ,获得积分10
29秒前
29秒前
ZHU完成签到,获得积分10
30秒前
阳阳发布了新的文献求助10
31秒前
Raymond应助雪山飞龙采纳,获得10
31秒前
kk发布了新的文献求助10
32秒前
32秒前
33秒前
33秒前
33秒前
34秒前
37秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849