亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Metabolomics Analysis in Acute Paraquat Poisoning Patients Based on UPLC-Q-TOF-MS and Machine Learning Approach

血液灌流 百草枯 代谢物 代谢组学 高效液相色谱法 四极飞行时间 急性毒性 色谱法 药理学 化学 医学 质谱法 毒性 内科学 生物化学 血液透析 串联质谱法
作者
Congcong Wen,Feiyan Lin,Binge Huang,Zhiguang Zhang,Xianqin Wang,Jianshe Ma,Guanyang Lin,Huiling Chen,Lufeng Hu
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:32 (4): 629-637 被引量:21
标识
DOI:10.1021/acs.chemrestox.8b00328
摘要

Most paraquat (PQ) poisoned patients died from acute multiple organ failure (MOF) such as lung, kidney, and heart. However, the exact mechanism of intoxication is still unclear. In order to find out the initial toxic mechanism of PQ poisoning, a blood metabolomics study based on ultraperformance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) and efficient machine learning approach was performed on 23 PQ poisoned patients and 29 healthy subjects. The initial PQ plasma concentrations of PQ poisoned patients were >1000 ng/mL, and the blood samples were collected at before first hemoperfusion (HP), after first HP, and after last HP. The results showed that PQ poisoned patients all differed from healthy subjects, whatever they were before or after first HP or after last HP. The efficient machine learning approaches selected key metabolites from three UPLC/Q-TOF-MS data sets which had the highest classification performance in terms of classification accuracy, Matthews Correlation Coefficients, sensitivity, and specificity, respectively. The mass identification revealed that the most important metabolite was adenosine, which sustained in low level, regardless of whether PQ poisoned patients received HP treatment. In conclusion, decreased adenosine was the most important metabolite in PQ poisoned patients. The metabolic disturbance caused by PQ poisoning cannot be improved by HP treatment even the PQ was cleared from the blood.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
点点zzz发布了新的文献求助10
1秒前
愉快凡旋完成签到,获得积分10
1秒前
李爱国应助科研小白采纳,获得10
5秒前
长情黄蜂发布了新的文献求助200
10秒前
16秒前
科研通AI2S应助文武采纳,获得10
17秒前
18秒前
自由的水杯完成签到,获得积分10
19秒前
21秒前
科研小白发布了新的文献求助10
22秒前
23秒前
23秒前
lalalatiancai发布了新的文献求助10
25秒前
27秒前
37秒前
lalalatiancai完成签到,获得积分20
39秒前
ccherty发布了新的文献求助10
44秒前
www完成签到 ,获得积分10
45秒前
45秒前
程风破浪完成签到,获得积分10
48秒前
鹏程万里完成签到,获得积分10
51秒前
可爱的函函应助科研小白采纳,获得10
52秒前
56秒前
1分钟前
悄悄拔尖儿完成签到 ,获得积分10
1分钟前
1分钟前
科研小白发布了新的文献求助10
1分钟前
源源源完成签到 ,获得积分10
1分钟前
长情黄蜂发布了新的文献求助10
1分钟前
FashionBoy应助zf2023采纳,获得10
1分钟前
1分钟前
1分钟前
Drxie发布了新的文献求助10
1分钟前
英俊的铭应助AA采纳,获得10
1分钟前
一夜很静应助蔡从安采纳,获得10
1分钟前
一夜很静应助蔡从安采纳,获得10
1分钟前
香蕉觅云应助yuebaoji采纳,获得10
1分钟前
1分钟前
赘婿应助刘泽千采纳,获得30
1分钟前
AA发布了新的文献求助10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135489
关于积分的说明 9412388
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716832