发光
材料科学
持续发光
生物相容性
光动力疗法
纳米技术
生物相容性材料
光电子学
生物医学工程
化学
冶金
有机化学
医学
热释光
作者
Shao‐Kai Sun,Jian Wu,Haoyu Wang,Li Zhou,Zhen Cai,Ran Cheng,Di Kan,Xuejun Zhang,Yu Chen
出处
期刊:Biomaterials
[Elsevier]
日期:2019-10-01
卷期号:218: 119328-119328
被引量:40
标识
DOI:10.1016/j.biomaterials.2019.119328
摘要
Bioavailable persistent luminescence material is an ideal internal light source for long-term photodynamic therapy, but inevitably suffers from low utilization efficiency and weak persistent luminescence due to corrosion and screening processes. Herein, we show a facile and smart “turning solid into gel” strategy to fabricate persistent luminescence hydrogel for high-efficient persistent luminescence-sensitized photodynamic therapy. The homogeneous persistent luminescence hydrogel was synthesized via dispersing high-temperature calcined persistent luminescence material without corrosion and screening into a biocompatible alginate-Ca2+ hydrogel. The simple synthesis strategy allows 100% of utilization efficiency and intact persistent luminescence of persistent luminescence material. The persistent luminescence hydrogel possesses favorable biocompatibility, bright persistent luminescence, red light renewability, good syringeability, and strong fixing ability in tumors. The persistent luminescence hydrogel can be easily injected in vivo as a powerful localized light source for superior persistent luminescence-sensitized photodynamic therapy of tumors. The “turning solid into gel” strategy enables taking full advantages of persistent luminescence for biological applications, and shows great potential in utilizing diverse theranostic agents regardless of hydrophilicity and hydrophobicity.
科研通智能强力驱动
Strongly Powered by AbleSci AI