去卵巢大鼠
内分泌学
内科学
成骨细胞
化学
骨形成
体外
维生素
医学
生物
雌激素
生物化学
作者
Sheji Weng,Deyi Yan,Lijun Gu,Chen Liang,Zhongjie Xie,Zongyi Wu,Jiahao Tang,Zijian Shen,Hang Li,Bingli Bai,Viraj Boodhun,Lei Yang
标识
DOI:10.1016/j.cbi.2019.01.012
摘要
Osteoporosis is accompanied by insufficient osteogenic capacity. Several lines of evidence suggested that solutions to enhance osteoblastogenesis were important strategies for osteoporotic bone defect repair. This study investigated the effect of combined treatment with vitamin K2 and PTH on bone formation in calvarial bone defect in osteoporotic rats and its influence on osteoblast in vitro. Bilateral ovariectomy was used in SPF Sprague Dawley rats to generate an osteoporosis model. Subsequently, a calvarial defect model was established and all osteoporotic rats were randomly assigned to the following groups: control, VK (vitamin K2, 30 mg/kg everyday), PTH (recombinant human PTH (1–34), 60 μg/kg, three times a week) or VK + PTH (vitamin K2, 30 mg/kg everyday plus PTH, 60 μg/kg three times a week) for 8 weeks. In vitro, bone marrow-derived stem cells (BMSCs) were cultured and treated with vitamin K2, PTH or vitamin K2+PTH. ALP staining and western blot were performed to observe the influence of combined treatment on BMSCs. Bone formation within calvarial defect were assessed by serum γ-carboxylated osteocalcin (Gla-OC), micro-CT, histological and immunofluorescent labeling. In this study, combined treatment of PTH and vitamin K2 showed positive effects on preventing bone loss in femurs in OVX rats. Combined treatment increased serum Gla-OC and promoted bone formation in osteoporotic calvarial bone defects. Immunohistochemistry showed that OCN and RUNX2 were more highly expressed in the VK + PTH group than in the control groups. In vitro studies results suggested that combined treatment with PTH and vitamin K2 increased expression of ALP, BMP2 and RUNX2 in BMSCs. Our data suggested that the combination of vitamin K2 and PTH increased differentiation of osteoblast and had a synergistic effect on bone formation in osteoporotic calvarial bone defect.
科研通智能强力驱动
Strongly Powered by AbleSci AI