Learning by Teaching with Humanoid Robot: A New Powerful Experimental Tool to Improve Children’s Learning Ability

计算机科学 导师 任务(项目管理) 仿人机器人 通知 词汇 阅读(过程) 机器人 归属 人工智能 元认知 领域(数学) 人机交互 心理学 认知 哲学 经济 神经科学 管理 程序设计语言 法学 纯数学 社会心理学 语言学 数学 政治学
作者
Frank Jamet,Olivier Masson,Baptiste Jacquet,Jean-Louis Stilgenbauer,Jean Baratgin
出处
期刊:Journal of Robotics [Hindawi Limited]
卷期号:2018: 1-11 被引量:47
标识
DOI:10.1155/2018/4578762
摘要

Browsing the literature shows that an increasing number of authors choose to use the learning by teaching approach in the field of educational robotics. The goal of this paper is, on the one hand, to produce a review of articles describing the effects of this approach on learning and, on the other hand, to review the literature in order to explore the characteristics at the core of this approach. We will only focus on the work using a humanoid robot. The areas of learning studied are writing, reading, vocabulary, and reasoning, but also there are some metacognitive abilities like task commitment and mental state attribution. Their targets are from very young children to preadolescents. We can already notice some studies on pupils with special educational needs. In all of these domains, the results show a nonnegligible effect of learning by teaching both on learning and on metacognitive abilities. If the concept of learning by teaching is clear, a careful investigation of the different studies shows that experimental paradigms do not use the same basic characteristics. For some, it is the robot’s weakness, the care that must be given to it, which is the main requirement for the approach, while for others it is the unbalanced distribution of knowledge which is at the heart of it. The learning by teaching approach we will study has two components: the robot and the child tutor. The characteristics of the robot and what is asked of the child to accomplish his or her task of the tutor will be analyzed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助冰冰采纳,获得10
刚刚
刚刚
星辰大海应助12345采纳,获得10
刚刚
程希应助Luxuehua采纳,获得30
刚刚
科研发布了新的文献求助10
1秒前
2秒前
2秒前
科研通AI2S应助光亮的擎采纳,获得30
3秒前
Brave发布了新的文献求助10
4秒前
wjq发布了新的文献求助10
5秒前
Jasper应助无奈的醉冬采纳,获得10
5秒前
CS391495876发布了新的文献求助10
6秒前
lejunia发布了新的文献求助10
6秒前
顺其自然发布了新的文献求助10
7秒前
情怀应助鹏哥爱科研采纳,获得10
8秒前
锦蓁发布了新的文献求助20
8秒前
Yuanyuan发布了新的文献求助10
10秒前
10秒前
ysl完成签到,获得积分10
10秒前
耍酷的白梦完成签到,获得积分10
11秒前
13秒前
13秒前
13秒前
陆lu发布了新的文献求助10
14秒前
天宇发布了新的文献求助10
15秒前
16秒前
天天开心完成签到,获得积分10
16秒前
eazin完成签到 ,获得积分10
18秒前
19秒前
19秒前
22秒前
学术大亨发布了新的文献求助10
22秒前
顺其自然完成签到,获得积分20
22秒前
23秒前
23秒前
鹏哥爱科研完成签到,获得积分10
24秒前
CipherSage应助shuangcheng采纳,获得10
26秒前
27秒前
27秒前
彭于晏应助ray采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3559794
求助须知:如何正确求助?哪些是违规求助? 3134246
关于积分的说明 9406240
捐赠科研通 2834289
什么是DOI,文献DOI怎么找? 1558019
邀请新用户注册赠送积分活动 727812
科研通“疑难数据库(出版商)”最低求助积分说明 716522