Explainable machine-learning predictions for the prevention of hypoxaemia during surgery

低氧血症 医学 重症监护医学 麻醉
作者
Scott Lundberg,Bala G. Nair,Monica S. Vavilala,Mayumi Horibe,Michael J. Eisses,Trevor Adams,David E. Liston,Daniel King‐Wai Low,Shu-Fang Newman,Jerry W. Kim,Su‐In Lee
出处
期刊:Nature Biomedical Engineering [Springer Nature]
卷期号:2 (10): 749-760 被引量:1359
标识
DOI:10.1038/s41551-018-0304-0
摘要

Although anaesthesiologists strive to avoid hypoxaemia during surgery, reliably predicting future intraoperative hypoxaemia is not possible at present. Here, we report the development and testing of a machine-learning-based system that predicts the risk of hypoxaemia and provides explanations of the risk factors in real time during general anaesthesia. The system, which was trained on minute-by-minute data from the electronic medical records of over 50,000 surgeries, improved the performance of anaesthesiologists by providing interpretable hypoxaemia risks and contributing factors. The explanations for the predictions are broadly consistent with the literature and with prior knowledge from anaesthesiologists. Our results suggest that if anaesthesiologists currently anticipate 15% of hypoxaemia events, with the assistance of this system they could anticipate 30%, a large portion of which may benefit from early intervention because they are associated with modifiable factors. The system can help improve the clinical understanding of hypoxaemia risk during anaesthesia care by providing general insights into the exact changes in risk induced by certain characteristics of the patient or procedure. An alert system based on machine learning and trained on surgical data from electronic medical records helps anaesthesiologists prevent hypoxaemia during surgery by providing interpretable real-time predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
黑煤球发布了新的文献求助30
1秒前
北陌完成签到,获得积分10
1秒前
阔达的马里奥完成签到 ,获得积分10
1秒前
2秒前
超帅听枫发布了新的文献求助10
2秒前
心想事橙完成签到,获得积分10
3秒前
3秒前
领导范儿应助八大山人采纳,获得10
4秒前
CodeCraft应助发发采纳,获得10
4秒前
赞多完成签到,获得积分10
4秒前
5秒前
lsq108发布了新的文献求助10
6秒前
华仔应助郝宝真采纳,获得10
7秒前
烟花应助传统的海露采纳,获得10
9秒前
9秒前
10秒前
我是老大应助小薛采纳,获得10
11秒前
梦影完成签到,获得积分10
12秒前
ricky关注了科研通微信公众号
14秒前
14秒前
CipherSage应助Hh采纳,获得10
15秒前
15秒前
平淡的浩宇完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
在鹿特丹发布了新的文献求助10
17秒前
Paul111发布了新的文献求助10
18秒前
科研通AI2S应助Senna采纳,获得10
18秒前
明月照我程完成签到,获得积分10
19秒前
19秒前
油炸皮卡丘应助wankai采纳,获得10
19秒前
cc爱学习完成签到,获得积分10
19秒前
科研狗完成签到,获得积分10
20秒前
随机子应助伶俐的安波采纳,获得10
21秒前
八大山人发布了新的文献求助10
22秒前
超帅听枫完成签到 ,获得积分10
23秒前
发发发布了新的文献求助10
24秒前
24秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162844
求助须知:如何正确求助?哪些是违规求助? 2813816
关于积分的说明 7902135
捐赠科研通 2473442
什么是DOI,文献DOI怎么找? 1316849
科研通“疑难数据库(出版商)”最低求助积分说明 631545
版权声明 602187