亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Explainable machine-learning predictions for the prevention of hypoxaemia during surgery

低氧血症 医学 重症监护医学 麻醉
作者
Scott Lundberg,Bala G. Nair,Monica S. Vavilala,Mayumi Horibe,Michael J. Eisses,Trevor Adams,David E. Liston,Daniel King‐Wai Low,Shu-Fang Newman,Jerry W. Kim,Su‐In Lee
出处
期刊:Nature Biomedical Engineering [Springer Nature]
卷期号:2 (10): 749-760 被引量:1668
标识
DOI:10.1038/s41551-018-0304-0
摘要

Although anaesthesiologists strive to avoid hypoxaemia during surgery, reliably predicting future intraoperative hypoxaemia is not possible at present. Here, we report the development and testing of a machine-learning-based system that predicts the risk of hypoxaemia and provides explanations of the risk factors in real time during general anaesthesia. The system, which was trained on minute-by-minute data from the electronic medical records of over 50,000 surgeries, improved the performance of anaesthesiologists by providing interpretable hypoxaemia risks and contributing factors. The explanations for the predictions are broadly consistent with the literature and with prior knowledge from anaesthesiologists. Our results suggest that if anaesthesiologists currently anticipate 15% of hypoxaemia events, with the assistance of this system they could anticipate 30%, a large portion of which may benefit from early intervention because they are associated with modifiable factors. The system can help improve the clinical understanding of hypoxaemia risk during anaesthesia care by providing general insights into the exact changes in risk induced by certain characteristics of the patient or procedure. An alert system based on machine learning and trained on surgical data from electronic medical records helps anaesthesiologists prevent hypoxaemia during surgery by providing interpretable real-time predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
田様应助GIA采纳,获得10
2秒前
14秒前
Hello应助lawang采纳,获得10
15秒前
科研通AI2S应助lawang采纳,获得10
15秒前
完美世界应助lawang采纳,获得10
15秒前
orixero应助lawang采纳,获得10
15秒前
小蘑菇应助lawang采纳,获得10
15秒前
Tameiki发布了新的文献求助10
20秒前
ding应助Tameiki采纳,获得10
36秒前
37秒前
万能图书馆应助lawang采纳,获得10
59秒前
星辰大海应助lawang采纳,获得10
1分钟前
领导范儿应助lawang采纳,获得10
1分钟前
善学以致用应助lawang采纳,获得10
1分钟前
共享精神应助lawang采纳,获得10
1分钟前
JamesPei应助lawang采纳,获得10
1分钟前
Lucas应助lawang采纳,获得10
1分钟前
Ava应助lawang采纳,获得10
1分钟前
SciGPT应助lawang采纳,获得10
1分钟前
Owen应助lawang采纳,获得10
1分钟前
1分钟前
Moto_Fang完成签到 ,获得积分10
1分钟前
1分钟前
黄院士完成签到 ,获得积分10
1分钟前
Hello应助putao采纳,获得10
1分钟前
1分钟前
putao发布了新的文献求助10
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
GIA发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5658113
求助须知:如何正确求助?哪些是违规求助? 4817258
关于积分的说明 15080877
捐赠科研通 4816425
什么是DOI,文献DOI怎么找? 2577351
邀请新用户注册赠送积分活动 1532344
关于科研通互助平台的介绍 1490957