Explainable machine-learning predictions for the prevention of hypoxaemia during surgery

低氧血症 医学 重症监护医学 麻醉
作者
Scott Lundberg,Bala G. Nair,Monica S. Vavilala,Mayumi Horibe,Michael J. Eisses,Trevor Adams,David E. Liston,Daniel King‐Wai Low,Shu-Fang Newman,Jerry W. Kim,Su‐In Lee
出处
期刊:Nature Biomedical Engineering [Nature Portfolio]
卷期号:2 (10): 749-760 被引量:1479
标识
DOI:10.1038/s41551-018-0304-0
摘要

Although anaesthesiologists strive to avoid hypoxaemia during surgery, reliably predicting future intraoperative hypoxaemia is not possible at present. Here, we report the development and testing of a machine-learning-based system that predicts the risk of hypoxaemia and provides explanations of the risk factors in real time during general anaesthesia. The system, which was trained on minute-by-minute data from the electronic medical records of over 50,000 surgeries, improved the performance of anaesthesiologists by providing interpretable hypoxaemia risks and contributing factors. The explanations for the predictions are broadly consistent with the literature and with prior knowledge from anaesthesiologists. Our results suggest that if anaesthesiologists currently anticipate 15% of hypoxaemia events, with the assistance of this system they could anticipate 30%, a large portion of which may benefit from early intervention because they are associated with modifiable factors. The system can help improve the clinical understanding of hypoxaemia risk during anaesthesia care by providing general insights into the exact changes in risk induced by certain characteristics of the patient or procedure. An alert system based on machine learning and trained on surgical data from electronic medical records helps anaesthesiologists prevent hypoxaemia during surgery by providing interpretable real-time predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助二二二采纳,获得10
刚刚
sisyphus发布了新的文献求助10
刚刚
Alive完成签到,获得积分20
刚刚
桃之夭夭给桃之夭夭的求助进行了留言
1秒前
科研通AI2S应助lailai007采纳,获得10
2秒前
尉迟完成签到,获得积分10
2秒前
李健的粉丝团团长应助HY采纳,获得10
2秒前
3秒前
田様应助thinking采纳,获得10
4秒前
yukang应助NorthWang采纳,获得10
5秒前
艾米尼完成签到,获得积分10
5秒前
姜姜发布了新的文献求助10
6秒前
超级铃铛发布了新的文献求助10
6秒前
芒果布丁完成签到 ,获得积分10
7秒前
二二二完成签到,获得积分10
8秒前
8秒前
8秒前
明亮代秋完成签到,获得积分10
8秒前
郭泓嵩完成签到,获得积分10
10秒前
10秒前
阿姨洗铁路完成签到 ,获得积分10
10秒前
冬天里的蝴蝶完成签到,获得积分10
10秒前
佛爷完成签到,获得积分10
11秒前
啦啦啦发布了新的文献求助10
12秒前
。。。完成签到,获得积分10
12秒前
13秒前
研友_VZG7GZ应助4465456456采纳,获得10
13秒前
李爱国应助tracer采纳,获得10
13秒前
13秒前
15秒前
丘比特应助嗷嗷嗷采纳,获得10
15秒前
16秒前
JamesPei应助我不是很帅采纳,获得10
16秒前
16秒前
16秒前
16秒前
8033发布了新的文献求助30
17秒前
ILS完成签到 ,获得积分10
17秒前
18秒前
852应助Bellis采纳,获得10
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3735743
求助须知:如何正确求助?哪些是违规求助? 3279522
关于积分的说明 10015750
捐赠科研通 2996212
什么是DOI,文献DOI怎么找? 1643951
邀请新用户注册赠送积分活动 781630
科研通“疑难数据库(出版商)”最低求助积分说明 749423