Explainable machine-learning predictions for the prevention of hypoxaemia during surgery

低氧血症 医学 重症监护医学 麻醉
作者
Scott Lundberg,Bala G. Nair,Monica S. Vavilala,Mayumi Horibe,Michael J. Eisses,Trevor Adams,David E. Liston,Daniel King‐Wai Low,Shu-Fang Newman,Jerry W. Kim,Su‐In Lee
出处
期刊:Nature Biomedical Engineering [Springer Nature]
卷期号:2 (10): 749-760 被引量:1668
标识
DOI:10.1038/s41551-018-0304-0
摘要

Although anaesthesiologists strive to avoid hypoxaemia during surgery, reliably predicting future intraoperative hypoxaemia is not possible at present. Here, we report the development and testing of a machine-learning-based system that predicts the risk of hypoxaemia and provides explanations of the risk factors in real time during general anaesthesia. The system, which was trained on minute-by-minute data from the electronic medical records of over 50,000 surgeries, improved the performance of anaesthesiologists by providing interpretable hypoxaemia risks and contributing factors. The explanations for the predictions are broadly consistent with the literature and with prior knowledge from anaesthesiologists. Our results suggest that if anaesthesiologists currently anticipate 15% of hypoxaemia events, with the assistance of this system they could anticipate 30%, a large portion of which may benefit from early intervention because they are associated with modifiable factors. The system can help improve the clinical understanding of hypoxaemia risk during anaesthesia care by providing general insights into the exact changes in risk induced by certain characteristics of the patient or procedure. An alert system based on machine learning and trained on surgical data from electronic medical records helps anaesthesiologists prevent hypoxaemia during surgery by providing interpretable real-time predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助搬砖小土妞采纳,获得10
刚刚
1秒前
卡洛完成签到,获得积分10
1秒前
LHY完成签到,获得积分20
2秒前
zzz完成签到 ,获得积分10
2秒前
琦琦发布了新的文献求助10
3秒前
nxy完成签到 ,获得积分10
3秒前
HL应助现实的曼安采纳,获得10
4秒前
天天发布了新的文献求助80
5秒前
culiucabbage发布了新的文献求助10
6秒前
7秒前
wawu完成签到 ,获得积分10
7秒前
10秒前
SciGPT应助李勤_秦礼采纳,获得10
11秒前
赵晶晶发布了新的文献求助10
11秒前
cryo完成签到 ,获得积分10
12秒前
gan发布了新的文献求助10
13秒前
14秒前
背后的雪卉应助予秋采纳,获得10
14秒前
Hello应助YZ采纳,获得10
14秒前
15秒前
15秒前
QQ发布了新的文献求助10
15秒前
17秒前
无极微光应助kjlee采纳,获得20
18秒前
18秒前
19秒前
literature完成签到 ,获得积分20
19秒前
Hello应助Ninico采纳,获得10
19秒前
欣加发布了新的文献求助10
19秒前
午餐肉完成签到,获得积分10
20秒前
一个完成签到,获得积分10
21秒前
悦耳以旋完成签到,获得积分10
22秒前
赵晶晶完成签到,获得积分10
22秒前
刘佳慧完成签到 ,获得积分10
22秒前
研友_VZG7GZ应助思絮采纳,获得10
22秒前
orixero应助七月采纳,获得10
23秒前
literature关注了科研通微信公众号
23秒前
qiqi发布了新的文献求助10
23秒前
Roy发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5589801
求助须知:如何正确求助?哪些是违规求助? 4674367
关于积分的说明 14793421
捐赠科研通 4629109
什么是DOI,文献DOI怎么找? 2532421
邀请新用户注册赠送积分活动 1501070
关于科研通互助平台的介绍 1468487