Explainable machine-learning predictions for the prevention of hypoxaemia during surgery

低氧血症 医学 重症监护医学 麻醉
作者
Scott Lundberg,Bala G. Nair,Monica S. Vavilala,Mayumi Horibe,Michael J. Eisses,Trevor Adams,David E. Liston,Daniel King‐Wai Low,Shu-Fang Newman,Jerry W. Kim,Su‐In Lee
出处
期刊:Nature Biomedical Engineering [Nature Portfolio]
卷期号:2 (10): 749-760 被引量:1479
标识
DOI:10.1038/s41551-018-0304-0
摘要

Although anaesthesiologists strive to avoid hypoxaemia during surgery, reliably predicting future intraoperative hypoxaemia is not possible at present. Here, we report the development and testing of a machine-learning-based system that predicts the risk of hypoxaemia and provides explanations of the risk factors in real time during general anaesthesia. The system, which was trained on minute-by-minute data from the electronic medical records of over 50,000 surgeries, improved the performance of anaesthesiologists by providing interpretable hypoxaemia risks and contributing factors. The explanations for the predictions are broadly consistent with the literature and with prior knowledge from anaesthesiologists. Our results suggest that if anaesthesiologists currently anticipate 15% of hypoxaemia events, with the assistance of this system they could anticipate 30%, a large portion of which may benefit from early intervention because they are associated with modifiable factors. The system can help improve the clinical understanding of hypoxaemia risk during anaesthesia care by providing general insights into the exact changes in risk induced by certain characteristics of the patient or procedure. An alert system based on machine learning and trained on surgical data from electronic medical records helps anaesthesiologists prevent hypoxaemia during surgery by providing interpretable real-time predictions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11完成签到 ,获得积分10
刚刚
快乐修勾完成签到 ,获得积分10
1秒前
Alienwalker完成签到 ,获得积分10
1秒前
惊蛰时分听春雷完成签到,获得积分10
1秒前
鱼香rose盖饭完成签到,获得积分10
1秒前
2秒前
温柔的夜柳完成签到,获得积分10
2秒前
2秒前
eagle14835完成签到,获得积分10
2秒前
Pengcheng发布了新的文献求助10
3秒前
舒心的芝麻完成签到,获得积分10
3秒前
简一完成签到,获得积分10
3秒前
7rey完成签到,获得积分10
3秒前
机械腾完成签到,获得积分10
4秒前
zzzzz完成签到,获得积分10
4秒前
gxh00完成签到,获得积分10
5秒前
口爱DI乔巴完成签到,获得积分10
5秒前
旷野发布了新的文献求助10
6秒前
llzuo完成签到,获得积分10
6秒前
方减除发布了新的文献求助10
6秒前
Prillision完成签到,获得积分10
6秒前
冬瓜熊完成签到,获得积分10
7秒前
随风走完成签到,获得积分10
7秒前
sgs完成签到,获得积分10
8秒前
liam完成签到,获得积分10
8秒前
kdkfjaljk完成签到 ,获得积分10
8秒前
甜崽小肉丸完成签到,获得积分10
8秒前
DAI完成签到,获得积分10
9秒前
EnjieLin完成签到,获得积分10
10秒前
丫头完成签到 ,获得积分10
10秒前
诸葛烤鸭完成签到,获得积分10
11秒前
1107任务报告完成签到,获得积分10
11秒前
任婷完成签到,获得积分10
11秒前
lzj001983完成签到,获得积分10
12秒前
丸子完成签到 ,获得积分10
13秒前
空耳大师完成签到 ,获得积分10
13秒前
13秒前
忆之完成签到,获得积分10
13秒前
hanshishengye完成签到 ,获得积分10
14秒前
健壮的涑完成签到 ,获得积分10
14秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950051
求助须知:如何正确求助?哪些是违规求助? 3495384
关于积分的说明 11076831
捐赠科研通 3225937
什么是DOI,文献DOI怎么找? 1783346
邀请新用户注册赠送积分活动 867640
科研通“疑难数据库(出版商)”最低求助积分说明 800855