Regularization Parameter Selection in Minimum Volume Hyperspectral Unmixing

高光谱成像 端元 单纯形 正规化(语言学) 计算机科学 数据点 算法 选型 像素 稳健性(进化) 数学优化 数学 人工智能 生物化学 基因 化学 几何学
作者
Lina Zhuang,Chia-Hsiang Lin,Mário A. T. Figueiredo,José M. Bioucas‐Dias
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (12): 9858-9877 被引量:93
标识
DOI:10.1109/tgrs.2019.2929776
摘要

Linear hyperspectral unmixing (HU) aims at factoring the observation matrix into an endmember matrix and an abundance matrix. Linear HU via variational minimum volume (MV) regularization has recently received considerable attention in the remote sensing and machine learning areas, mainly owing to its robustness against the absence of pure pixels. We put some popular linear HU formulations under a unifying framework, which involves a data-fitting term and an MV-based regularization term, and collectively solve it via a nonconvex optimization. As the former and the latter terms tend, respectively, to expand (reducing the data-fitting errors) and to shrink the simplex enclosing the measured spectra, it is critical to strike a balance between those two terms. To the best of our knowledge, the existing methods find such balance by tuning a regularization parameter manually, which has little value in unsupervised scenarios. In this paper, we aim at selecting the regularization parameter automatically by exploiting the fact that a too large parameter overshrinks the volume of the simplex defined by the endmembers, making many data points be left outside of the simplex and hence inducing a large data-fitting error, while a sufficiently small parameter yields a large simplex making data-fitting error very small. Roughly speaking, the transition point happens when the simplex still encloses the data cloud but there are data points on all its facets. These observations are systematically formulated to find the transition point that, in turn, yields a good parameter. The competitiveness of the proposed selection criterion is illustrated with simulated and real data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助科研通管家采纳,获得10
刚刚
酷波er应助科研通管家采纳,获得10
刚刚
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
完美世界应助科研通管家采纳,获得10
刚刚
李健应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Ava应助米玄采纳,获得10
1秒前
725完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
3秒前
Ava应助baiyi2024采纳,获得20
3秒前
AdoreYee完成签到,获得积分10
3秒前
谭诗语发布了新的文献求助10
4秒前
Oz完成签到,获得积分20
5秒前
6秒前
6秒前
赘婿应助外向寒凝采纳,获得10
6秒前
xxx完成签到,获得积分20
7秒前
7秒前
7秒前
Boxin完成签到,获得积分10
8秒前
leolee完成签到 ,获得积分10
9秒前
9秒前
研友_89Nm7L发布了新的文献求助10
10秒前
大个应助清脆南蕾采纳,获得10
10秒前
Clover完成签到,获得积分10
10秒前
Jasper应助芒果椿采纳,获得10
10秒前
DreamerKing发布了新的文献求助10
10秒前
10秒前
太渊发布了新的文献求助10
11秒前
jjjjj关注了科研通微信公众号
11秒前
xxx发布了新的文献求助10
11秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3749099
求助须知:如何正确求助?哪些是违规求助? 3292389
关于积分的说明 10076350
捐赠科研通 3007880
什么是DOI,文献DOI怎么找? 1651883
邀请新用户注册赠送积分活动 786858
科研通“疑难数据库(出版商)”最低求助积分说明 751861