Spatial Autocorrelation in Mass Spectrometry Imaging

空间分析 自相关 质谱成像 化学 统计 质谱法 数学 色谱法
作者
Alberto Cassese,Shane R. Ellis,Nina Ogrinc,Elke Burgermeister,Matthias Ebert,Axel Walch,Arn M. J. M. van den Maagdenberg,Liam A. McDonnell,Ron M. A. Heeren,Benjamin Balluff
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:88 (11): 5871-5878 被引量:30
标识
DOI:10.1021/acs.analchem.6b00672
摘要

Mass spectrometry imaging (MSI) is a powerful molecular imaging technique. In microprobe MSI, images are created through a grid-wise interrogation of individual spots by mass spectrometry across a surface. Classical statistical tests for within-sample comparisons fail as close-by measurement spots violate the assumption of independence of these tests, which can lead to an increased false-discovery rate. For spatial data, this effect is referred to as spatial autocorrelation. In this study, we investigated spatial autocorrelation in three different matrix-assisted laser desorption/ionization MSI data sets. These data sets cover different molecular classes (metabolites/drugs, lipids, and proteins) and different spatial resolutions ranging from 20 to 100 μm. Significant spatial autocorrelation was detected in all three data sets and found to increase with decreasing pixel size. To enable statistical testing for differences in mass signal intensities between regions of interest within MSI data sets, we propose the use of Conditional Autoregressive (CAR) models. We show that, by accounting for spatial autocorrelation, discovery rates (i.e., the ratio between the features identified and the total number of features) could be reduced between 21% and 69%. The reliability of this approach was validated by control mass signals based on prior knowledge. In light of the advent of larger MSI data sets based on either an increased spatial resolution or 3D data sets, accounting for effects due to spatial autocorrelation becomes even more indispensable. Here, we propose a generic and easily applicable workflow to enable within-sample statistical comparisons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
pharrah发布了新的文献求助10
刚刚
刚刚
2秒前
拼搏荧发布了新的文献求助10
2秒前
调皮的沛萍完成签到,获得积分20
2秒前
23lk发布了新的文献求助10
2秒前
huofuman发布了新的文献求助10
2秒前
沧笙踏歌发布了新的文献求助10
3秒前
Chushi完成签到,获得积分10
4秒前
pharrah完成签到,获得积分10
5秒前
zhusihua发布了新的文献求助10
5秒前
6秒前
6秒前
丘比特应助Gyro采纳,获得10
7秒前
7秒前
西瓜汽水完成签到,获得积分10
8秒前
在水一方应助LHW采纳,获得10
8秒前
8秒前
8秒前
9秒前
9秒前
小瓢虫发布了新的文献求助10
10秒前
夜柒七完成签到,获得积分10
11秒前
chaoschen完成签到,获得积分10
13秒前
羫孔发布了新的文献求助10
13秒前
Steven发布了新的文献求助10
14秒前
木木发布了新的文献求助30
14秒前
key发布了新的文献求助10
14秒前
zhaoyuwei发布了新的文献求助10
16秒前
CipherSage应助温乘云采纳,获得10
16秒前
18秒前
dailin发布了新的文献求助10
19秒前
20秒前
无糖零脂完成签到,获得积分10
20秒前
老实的画板关注了科研通微信公众号
20秒前
21秒前
羫孔完成签到,获得积分10
22秒前
DE2022发布了新的文献求助10
23秒前
25秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502655
关于积分的说明 11109426
捐赠科研通 3233441
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870650
科研通“疑难数据库(出版商)”最低求助积分说明 802141