Spatial Autocorrelation in Mass Spectrometry Imaging

空间分析 自相关 质谱成像 化学 统计 质谱法 数学 色谱法
作者
Alberto Cassese,Shane R. Ellis,Nina Ogrinc,Elke Burgermeister,Matthias Ebert,Axel Walch,Arn M. J. M. van den Maagdenberg,Liam A. McDonnell,Ron M. A. Heeren,Benjamin Balluff
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:88 (11): 5871-5878 被引量:30
标识
DOI:10.1021/acs.analchem.6b00672
摘要

Mass spectrometry imaging (MSI) is a powerful molecular imaging technique. In microprobe MSI, images are created through a grid-wise interrogation of individual spots by mass spectrometry across a surface. Classical statistical tests for within-sample comparisons fail as close-by measurement spots violate the assumption of independence of these tests, which can lead to an increased false-discovery rate. For spatial data, this effect is referred to as spatial autocorrelation. In this study, we investigated spatial autocorrelation in three different matrix-assisted laser desorption/ionization MSI data sets. These data sets cover different molecular classes (metabolites/drugs, lipids, and proteins) and different spatial resolutions ranging from 20 to 100 μm. Significant spatial autocorrelation was detected in all three data sets and found to increase with decreasing pixel size. To enable statistical testing for differences in mass signal intensities between regions of interest within MSI data sets, we propose the use of Conditional Autoregressive (CAR) models. We show that, by accounting for spatial autocorrelation, discovery rates (i.e., the ratio between the features identified and the total number of features) could be reduced between 21% and 69%. The reliability of this approach was validated by control mass signals based on prior knowledge. In light of the advent of larger MSI data sets based on either an increased spatial resolution or 3D data sets, accounting for effects due to spatial autocorrelation becomes even more indispensable. Here, we propose a generic and easily applicable workflow to enable within-sample statistical comparisons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
帅子完成签到,获得积分10
刚刚
小燕子发布了新的文献求助30
刚刚
chen完成签到,获得积分10
2秒前
qaplay完成签到 ,获得积分0
4秒前
4秒前
圈哥完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
鱼咬羊发布了新的文献求助10
8秒前
迦太基完成签到,获得积分20
8秒前
pzh完成签到 ,获得积分10
9秒前
纬宇完成签到,获得积分10
9秒前
甜甜的又蓝完成签到,获得积分10
10秒前
嘉心糖应助Monicamo采纳,获得60
11秒前
12秒前
MHK发布了新的文献求助10
12秒前
14秒前
14秒前
认真的弼发布了新的文献求助10
17秒前
DCW完成签到 ,获得积分10
17秒前
莫华龙发布了新的文献求助10
18秒前
董小董发布了新的文献求助10
18秒前
zhenzheng完成签到 ,获得积分10
18秒前
21秒前
MargeryMay完成签到,获得积分10
21秒前
24秒前
25秒前
vivre223完成签到,获得积分10
27秒前
时眠完成签到,获得积分10
29秒前
miao发布了新的文献求助10
30秒前
gan发布了新的文献求助10
30秒前
33秒前
Jackie完成签到,获得积分10
33秒前
憨憨完成签到 ,获得积分10
34秒前
MinQi完成签到,获得积分10
34秒前
DDL完成签到,获得积分10
34秒前
研友_VZG7GZ应助MHK采纳,获得10
35秒前
寡核苷酸小白完成签到 ,获得积分10
36秒前
英俊的铭应助久9采纳,获得10
37秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165504
求助须知:如何正确求助?哪些是违规求助? 2816567
关于积分的说明 7913125
捐赠科研通 2476098
什么是DOI,文献DOI怎么找? 1318668
科研通“疑难数据库(出版商)”最低求助积分说明 632179
版权声明 602388