Prediction of cell-penetrating peptides with feature selection techniques.

人工智能 模式识别(心理学) 生物系统 生物 机器学习 化学 选择(遗传算法) 特征(语言学)
作者
Hua Tang,Zhen-Dong Su,Huan-Huan Wei,Wei Chen,Hao Lin
出处
期刊:Biochemical and Biophysical Research Communications [Elsevier BV]
卷期号:477 (1): 150-154 被引量:54
标识
DOI:10.1016/j.bbrc.2016.06.035
摘要

Cell-penetrating peptides are a group of peptides which can transport different types of cargo molecules such as drugs across plasma membrane and have been applied in the treatment of various diseases. Thus, the accurate prediction of cell-penetrating peptides with bioinformatics methods will accelerate the development of drug delivery systems. The study aims to develop a powerful model to accurately identify cell-penetrating peptides. At first, the peptides were translated into a set of vectors with the same dimension by using dipeptide compositions. Secondly, the Analysis of Variance-based technique was used to reduce the dimension of the vector and explore the optimized features. Finally, the support vector machine was utilized to discriminate cell-penetrating peptides from non-cell-penetrating peptides. The five-fold cross-validated results showed that our proposed method could achieve an overall prediction accuracy of 83.6%. Based on the proposed model, we constructed a free webserver called C2Pred (http://lin.uestc.edu.cn/server/C2Pred).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猴猴完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
852应助闷闷采纳,获得10
1秒前
2秒前
2秒前
2秒前
慧慧发布了新的文献求助10
3秒前
4秒前
科研通AI2S应助Chelry采纳,获得10
4秒前
爱笑夜蕾发布了新的文献求助10
5秒前
yile完成签到,获得积分10
5秒前
流砂完成签到,获得积分10
5秒前
5秒前
七月流火应助CHENHAHA采纳,获得50
6秒前
李想完成签到,获得积分20
6秒前
6秒前
林子青完成签到,获得积分10
7秒前
7秒前
7秒前
Hepatology完成签到,获得积分10
7秒前
火星上的觅山完成签到,获得积分10
8秒前
英姑应助科研通管家采纳,获得10
9秒前
djiwisksk66应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
orixero应助科研通管家采纳,获得10
9秒前
9秒前
斯文败类应助科研通管家采纳,获得10
9秒前
李健应助老唐采纳,获得10
9秒前
桐桐应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
平淡山柏应助科研通管家采纳,获得30
9秒前
踏实问晴完成签到,获得积分10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
乐乐应助科研通管家采纳,获得10
10秒前
Ting完成签到 ,获得积分10
10秒前
10秒前
ding应助科研通管家采纳,获得30
10秒前
10秒前
lucky完成签到,获得积分10
10秒前
qwq完成签到,获得积分10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958393
求助须知:如何正确求助?哪些是违规求助? 3504692
关于积分的说明 11119524
捐赠科研通 3235856
什么是DOI,文献DOI怎么找? 1788584
邀请新用户注册赠送积分活动 871232
科研通“疑难数据库(出版商)”最低求助积分说明 802605