On the mechanism of hot deformation

材料科学 流动应力 变形(气象学) 微观结构 本构方程 现象学模型 动态再结晶 相关系数 钛合金 消散 均方误差 合金 复合材料 机械 热力学 热加工 统计 数学 物理 有限元法
作者
C.M. Sellars,W.J. McTegart
出处
期刊:Acta Metallurgica [Elsevier]
卷期号:14 (9): 1136-1138 被引量:1593
标识
DOI:10.1016/0001-6160(66)90207-0
摘要

To overcome the disadvantages of the phenomenological constitutive model, which is sensitive to data and limited by model structure and assumptions, and to enhance the prediction accuracy of the flow behavior of near-β titanium alloy during hot deformation, a machine learning prediction model was established using the whale optimized neural network algorithm (WOA-BP). To validate the model’s accuracy, hot compression experiments were conducted on a near-β titanium alloy, Ti-3Mo-6Cr-3Al-3Sn. Subsequently, the phenomenological constitutive model and WOA-BP model for the hot deformation process of the alloy were established. The analysis of flow stress prediction errors revealed significant improvements in comparison to the modified J-C constitutive structure model and Arrhenius constitutive structure model. Specifically, the WOA-BP model showed an increased error correlation coefficient (R) by 0.030063 and 0.17252, respectively, along with reduced average relative errors (AARE) to 14.92575 and 7.70414, respectively. The root mean square error (MSE) and mean absolute error (MAE) were significantly reduced to 22.51002 and 3.652993, respectively. The WOA-BP model greatly improved the accuracy of flow stress predictions. Using the flow stress prediction value from the WOA-BP model, the hot processing map was established at a true strain of 0.6. At a power dissipation factor (η) of 0.53–0.59, fully recrystallized grains appeared in the microstructure, exhibiting a relatively uniform grain size. Conversely, at η values of 0.17–0.21, significant deformation bands formed in the microstructure, making it unsuitable for thermal processing. This trend aligns with the power dissipation values, demonstrating the hot processing map’s accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
后青春期的痘完成签到,获得积分10
刚刚
sun完成签到 ,获得积分10
1秒前
jiang完成签到 ,获得积分10
2秒前
2秒前
苏卿应助郑开司09采纳,获得10
2秒前
湖月照我影完成签到 ,获得积分10
2秒前
Orange应助龙歪歪采纳,获得10
2秒前
Jack发布了新的文献求助10
2秒前
3秒前
JACK发布了新的文献求助10
3秒前
卿欣完成签到 ,获得积分10
4秒前
莉莉发布了新的文献求助10
4秒前
红烧茄子完成签到,获得积分10
4秒前
默默柚子完成签到,获得积分10
4秒前
nini完成签到 ,获得积分10
4秒前
陶醉海露完成签到,获得积分10
5秒前
5秒前
苗槐完成签到,获得积分10
5秒前
阳光的沉鱼完成签到,获得积分10
5秒前
大模型应助白华苍松采纳,获得10
6秒前
zyp应助火焰向上采纳,获得10
6秒前
6秒前
123456完成签到,获得积分10
6秒前
深情安青应助半颗橙子采纳,获得10
6秒前
CodeCraft应助123采纳,获得10
7秒前
隐形曼青应助心花怒放采纳,获得10
7秒前
酷酷的如天完成签到,获得积分10
7秒前
7秒前
常常完成签到,获得积分10
7秒前
7秒前
HH完成签到,获得积分10
7秒前
8秒前
8秒前
SandyH完成签到,获得积分10
8秒前
Jack完成签到,获得积分10
8秒前
白露完成签到 ,获得积分10
8秒前
Owen应助默默柚子采纳,获得10
9秒前
9秒前
隐形的易巧完成签到 ,获得积分10
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762