凸优化
数学
凸性
最优化问题
数学优化
应用数学
理论(学习稳定性)
指数稳定性
马尔可夫链
线性矩阵不等式
约束(计算机辅助设计)
基质(化学分析)
正多边形
计算机科学
非线性系统
统计
物理
化学
色谱法
量子力学
经济
机器学习
几何学
金融经济学
作者
Chengyan Zhao,Masaki Ogura,Kenji Sugimoto
摘要
In this paper, we study the problem of optimizing the stability of positive semi-Markov jump linear systems. We specifically consider the problems of tuning the coefficients of the system matrices for maximizing the exponential decay rate of the system under a budget-constraint and minimizing the parameter tuning cost under the decay rate constraint. By using a result from the matrix theory on the log-log convexity of the spectral radius of nonnegative matrices, we show that the stability optimization problems are reduced to convex optimization problems under certain regularity conditions on the system matrices and the cost function. We illustrate the validity and effectiveness of the proposed results by using an example from the population biology.
科研通智能强力驱动
Strongly Powered by AbleSci AI