过冷
电化学
硫黄
材料科学
锂硫电池
锂(药物)
相(物质)
电极
化学
化学工程
热力学
冶金
有机化学
物理化学
物理
内分泌学
工程类
医学
作者
Ankun Yang,Guangmin Zhou,Xian Kong,Rafael A. Vilá,Allen Pei,Yecun Wu,Xiaoyun Yu,Xueli Zheng,Chun-Lan Wu,Bofei Liu,Hao Chen,Yan Xu,Di Chen,Yanxi Li,Sirine C. Fakra,Harold Y. Hwang,Jian Qin,Steven Chu,Yi Cui
标识
DOI:10.1038/s41565-019-0624-6
摘要
It has recently been shown that sulfur, a solid material in its elementary form S8, can stay in a supercooled state as liquid sulfur in an electrochemical cell. We establish that this newly discovered state could have implications for lithium–sulfur batteries. Here, through in situ studies of electrochemical sulfur generation, we show that liquid (supercooled) and solid elementary sulfur possess very different areal capacities over the same charging period. To control the physical state of sulfur, we studied its growth on two-dimensional layered materials. We found that on the basal plane, only liquid sulfur accumulates; by contrast, at the edge sites, liquid sulfur accumulates if the thickness of the two-dimensional material is small, whereas solid sulfur nucleates if the thickness is large (tens of nanometres). Correlating the sulfur states with their respective areal capacities, as well as controlling the growth of sulfur on two-dimensional materials, could provide insights for the design of future lithium–sulfur batteries. A supercooled liquid phase of elemental sulfur can be grown electrochemically on two-dimensional materials. This phase has a markedly higher areal capacity than solid sulfur, with possible implications for future lithium–sulfur batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI