Individual tree crown segmentation from airborne LiDAR data using a novel Gaussian filter and energy function minimization-based approach

激光雷达 牙冠(牙科) 分割 天蓬 遥感 树(集合论) 计算机科学 数学 人工智能 地质学 地理 医学 数学分析 考古 牙科
作者
Ting Yun,Kang Jiang,Guangchao Li,Markus P. Eichhorn,Jiangchuan Fan,Fangzhou Liu,Bangqian Chen,Feng An,Lin Cao
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:256: 112307-112307 被引量:109
标识
DOI:10.1016/j.rse.2021.112307
摘要

Accurate segmentation of individual tree crowns (ITCs) from airborne light detection and ranging (LiDAR) data remains a challenge for forest inventories. Although many ITC segmentation methods have been developed to derive tree crown information from airborne LiDAR data, these algorithms contain uncertainty in processing false treetops because of foliage clumps and lateral branches, overlapping canopies without clear valley-shape areas, and sub-canopy crowns with neighbouring trees that obscure their shapes from an aerial perspective. Here, we propose an approach to crown segmentation using computer vision theories applied in different forest types. First, a dual Gaussian filter was designed with automated adaptive parameter assignment and a screening strategy for false treetops. This preserved the geometric characteristics of sub-canopy trees while eliminating false treetops. Second, anisotropic water expansion controlled by the energy function was applied for accurate crown segmentation. This utilized gradient information from the digital surface model and explored the morphological structures of tree crown boundaries as analogous to the maximal valley height difference from surrounding treetops. We demonstrate the generality of our approach in the subtropical forests within China. Our approach enhanced the detection rate of treetops and ITC segmentation relative to the marker-controlled watershed method, especially in complicated intersections of multiple crowns. A high performance was demonstrated for three pure Eucalyptus plots (a treetop detection rate r ≥ 0.95 and crown width estimation R2 ≥ 0.90 for canopy trees; r ≥ 0.85 and R2 ≥ 0.88 for sub-canopy trees) and three plots dominated by Chinese fir (r ≥ 0.95 and R2 ≥ 0.87 for canopy trees; r ≥ 0.79 and R2 ≥ 0.83 for sub-canopy trees). Finally, in a relatively complex forest park containing a wide range of tree species and sizes, a high performance was also achieved (r = 0.93 and R2 ≥ 0.85 for canopy trees; r = 0.70 and R2 ≥ 0.80 for sub-canopy trees). Our method demonstrates that methods inspired by the computer vision theory can improve on existing approaches, providing the potential for accurate crown segmentation even in mixed forests with complex structures

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gao发布了新的文献求助10
刚刚
kiminonawa应助wm t采纳,获得20
刚刚
Cuisine完成签到 ,获得积分10
刚刚
1秒前
2秒前
2秒前
清爽的易真完成签到,获得积分10
2秒前
2秒前
3秒前
yuan完成签到,获得积分10
4秒前
4秒前
CLN完成签到,获得积分10
4秒前
4秒前
5秒前
搜集达人应助负责小丸子采纳,获得30
5秒前
诸亦凝完成签到,获得积分10
5秒前
JamesPei应助JUN采纳,获得10
5秒前
my196755完成签到,获得积分10
5秒前
ZHANG完成签到,获得积分10
6秒前
6秒前
东北发布了新的文献求助10
6秒前
lirongcas发布了新的文献求助10
7秒前
认真科研发布了新的文献求助10
7秒前
崔万齐完成签到,获得积分20
8秒前
8秒前
完美世界应助柠檬陈采纳,获得10
9秒前
9秒前
冬无青山发布了新的文献求助10
9秒前
9秒前
9秒前
Lord完成签到 ,获得积分10
9秒前
SciGPT应助现代的大叔采纳,获得10
9秒前
gralish发布了新的文献求助10
10秒前
aaaaa发布了新的文献求助10
11秒前
隐形曼青应助那么多鱿鱼采纳,获得10
11秒前
11秒前
11秒前
瘦瘦的烤鸡完成签到,获得积分10
12秒前
英姑应助321采纳,获得10
12秒前
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297