亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Individual tree crown segmentation from airborne LiDAR data using a novel Gaussian filter and energy function minimization-based approach

激光雷达 牙冠(牙科) 分割 天蓬 遥感 树(集合论) 计算机科学 数学 人工智能 地质学 地理 医学 数学分析 牙科 考古
作者
Ting Yun,Kang Jiang,Guangchao Li,Markus P. Eichhorn,Jiangchuan Fan,Fangzhou Liu,Bangqian Chen,Feng An,Lin Cao
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:256: 112307-112307 被引量:109
标识
DOI:10.1016/j.rse.2021.112307
摘要

Accurate segmentation of individual tree crowns (ITCs) from airborne light detection and ranging (LiDAR) data remains a challenge for forest inventories. Although many ITC segmentation methods have been developed to derive tree crown information from airborne LiDAR data, these algorithms contain uncertainty in processing false treetops because of foliage clumps and lateral branches, overlapping canopies without clear valley-shape areas, and sub-canopy crowns with neighbouring trees that obscure their shapes from an aerial perspective. Here, we propose an approach to crown segmentation using computer vision theories applied in different forest types. First, a dual Gaussian filter was designed with automated adaptive parameter assignment and a screening strategy for false treetops. This preserved the geometric characteristics of sub-canopy trees while eliminating false treetops. Second, anisotropic water expansion controlled by the energy function was applied for accurate crown segmentation. This utilized gradient information from the digital surface model and explored the morphological structures of tree crown boundaries as analogous to the maximal valley height difference from surrounding treetops. We demonstrate the generality of our approach in the subtropical forests within China. Our approach enhanced the detection rate of treetops and ITC segmentation relative to the marker-controlled watershed method, especially in complicated intersections of multiple crowns. A high performance was demonstrated for three pure Eucalyptus plots (a treetop detection rate r ≥ 0.95 and crown width estimation R2 ≥ 0.90 for canopy trees; r ≥ 0.85 and R2 ≥ 0.88 for sub-canopy trees) and three plots dominated by Chinese fir (r ≥ 0.95 and R2 ≥ 0.87 for canopy trees; r ≥ 0.79 and R2 ≥ 0.83 for sub-canopy trees). Finally, in a relatively complex forest park containing a wide range of tree species and sizes, a high performance was also achieved (r = 0.93 and R2 ≥ 0.85 for canopy trees; r = 0.70 and R2 ≥ 0.80 for sub-canopy trees). Our method demonstrates that methods inspired by the computer vision theory can improve on existing approaches, providing the potential for accurate crown segmentation even in mixed forests with complex structures

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CWY发布了新的文献求助50
1秒前
彭于晏应助wdsgkfjhn采纳,获得10
10秒前
飞天大南瓜完成签到,获得积分10
24秒前
终归完成签到 ,获得积分10
29秒前
29秒前
MchemG应助科研通管家采纳,获得20
36秒前
MchemG应助科研通管家采纳,获得20
36秒前
Criminology34应助科研通管家采纳,获得10
36秒前
辉辉应助科研通管家采纳,获得10
36秒前
42秒前
44秒前
Epiphany发布了新的文献求助10
48秒前
13633501455完成签到 ,获得积分10
57秒前
1分钟前
犬来八荒发布了新的文献求助10
1分钟前
1分钟前
Epiphany完成签到,获得积分10
1分钟前
1分钟前
上官若男应助温婉的凝雁采纳,获得10
1分钟前
Alvin完成签到 ,获得积分10
1分钟前
温婉的凝雁完成签到,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
王玉发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Cherry发布了新的文献求助10
2分钟前
3分钟前
昌莆完成签到 ,获得积分10
3分钟前
3分钟前
冉亦完成签到,获得积分10
3分钟前
搜集达人应助null采纳,获得10
3分钟前
可爱的函函应助香菜肉丸采纳,获得10
3分钟前
3分钟前
平淡映秋发布了新的文献求助10
3分钟前
focus完成签到 ,获得积分10
3分钟前
香菜肉丸发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5617095
求助须知:如何正确求助?哪些是违规求助? 4701461
关于积分的说明 14913699
捐赠科研通 4749054
什么是DOI,文献DOI怎么找? 2549285
邀请新用户注册赠送积分活动 1512345
关于科研通互助平台的介绍 1474091