Individual tree crown segmentation from airborne LiDAR data using a novel Gaussian filter and energy function minimization-based approach

激光雷达 牙冠(牙科) 分割 天蓬 遥感 树(集合论) 计算机科学 数学 人工智能 地质学 地理 医学 数学分析 牙科 考古
作者
Ting Yun,Kang Jiang,Guangchao Li,Markus P. Eichhorn,Jiangchuan Fan,Fangzhou Liu,Bangqian Chen,Feng An,Lin Cao
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:256: 112307-112307 被引量:109
标识
DOI:10.1016/j.rse.2021.112307
摘要

Accurate segmentation of individual tree crowns (ITCs) from airborne light detection and ranging (LiDAR) data remains a challenge for forest inventories. Although many ITC segmentation methods have been developed to derive tree crown information from airborne LiDAR data, these algorithms contain uncertainty in processing false treetops because of foliage clumps and lateral branches, overlapping canopies without clear valley-shape areas, and sub-canopy crowns with neighbouring trees that obscure their shapes from an aerial perspective. Here, we propose an approach to crown segmentation using computer vision theories applied in different forest types. First, a dual Gaussian filter was designed with automated adaptive parameter assignment and a screening strategy for false treetops. This preserved the geometric characteristics of sub-canopy trees while eliminating false treetops. Second, anisotropic water expansion controlled by the energy function was applied for accurate crown segmentation. This utilized gradient information from the digital surface model and explored the morphological structures of tree crown boundaries as analogous to the maximal valley height difference from surrounding treetops. We demonstrate the generality of our approach in the subtropical forests within China. Our approach enhanced the detection rate of treetops and ITC segmentation relative to the marker-controlled watershed method, especially in complicated intersections of multiple crowns. A high performance was demonstrated for three pure Eucalyptus plots (a treetop detection rate r ≥ 0.95 and crown width estimation R2 ≥ 0.90 for canopy trees; r ≥ 0.85 and R2 ≥ 0.88 for sub-canopy trees) and three plots dominated by Chinese fir (r ≥ 0.95 and R2 ≥ 0.87 for canopy trees; r ≥ 0.79 and R2 ≥ 0.83 for sub-canopy trees). Finally, in a relatively complex forest park containing a wide range of tree species and sizes, a high performance was also achieved (r = 0.93 and R2 ≥ 0.85 for canopy trees; r = 0.70 and R2 ≥ 0.80 for sub-canopy trees). Our method demonstrates that methods inspired by the computer vision theory can improve on existing approaches, providing the potential for accurate crown segmentation even in mixed forests with complex structures

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王世缘完成签到,获得积分10
刚刚
xiaoguoxiaoguo完成签到,获得积分10
刚刚
George Will完成签到,获得积分10
1秒前
无私的丹完成签到 ,获得积分10
1秒前
HuiYmao发布了新的文献求助10
2秒前
figo发布了新的文献求助10
2秒前
丘比特应助Sunny采纳,获得10
3秒前
NexusExplorer应助Katze采纳,获得10
4秒前
4秒前
王图图完成签到 ,获得积分10
5秒前
迷路山晴发布了新的文献求助10
5秒前
lzzk完成签到,获得积分10
6秒前
歇洛克完成签到,获得积分20
6秒前
英姑应助underway采纳,获得10
6秒前
大个应助郝好月采纳,获得10
7秒前
Ava应助虾啊采纳,获得10
7秒前
HuiYmao完成签到,获得积分10
7秒前
丸子完成签到 ,获得积分10
9秒前
脑洞疼应助大群采纳,获得10
9秒前
珍惜眼前人完成签到,获得积分10
9秒前
方法完成签到,获得积分10
10秒前
10秒前
ASHUN完成签到,获得积分10
11秒前
12秒前
星辰大海应助度度采纳,获得10
12秒前
小T儿完成签到,获得积分10
13秒前
SUNLE完成签到,获得积分10
14秒前
无花果应助迷路山晴采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
Ciaoh发布了新的文献求助10
15秒前
陌陌完成签到 ,获得积分10
16秒前
Sunny发布了新的文献求助10
16秒前
11完成签到,获得积分10
16秒前
布楚楚完成签到,获得积分20
16秒前
17秒前
尧尧发布了新的文献求助10
17秒前
Gauss应助天南采纳,获得30
18秒前
18秒前
优pp完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5607982
求助须知:如何正确求助?哪些是违规求助? 4692447
关于积分的说明 14874887
捐赠科研通 4716182
什么是DOI,文献DOI怎么找? 2543917
邀请新用户注册赠送积分活动 1509011
关于科研通互助平台的介绍 1472709