已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Individual tree crown segmentation from airborne LiDAR data using a novel Gaussian filter and energy function minimization-based approach

激光雷达 牙冠(牙科) 分割 天蓬 遥感 树(集合论) 计算机科学 数学 人工智能 地质学 地理 医学 数学分析 牙科 考古
作者
Ting Yun,Kang Jiang,Guangchao Li,Markus P. Eichhorn,Jiangchuan Fan,Fangzhou Liu,Bangqian Chen,Feng An,Lin Cao
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:256: 112307-112307 被引量:109
标识
DOI:10.1016/j.rse.2021.112307
摘要

Accurate segmentation of individual tree crowns (ITCs) from airborne light detection and ranging (LiDAR) data remains a challenge for forest inventories. Although many ITC segmentation methods have been developed to derive tree crown information from airborne LiDAR data, these algorithms contain uncertainty in processing false treetops because of foliage clumps and lateral branches, overlapping canopies without clear valley-shape areas, and sub-canopy crowns with neighbouring trees that obscure their shapes from an aerial perspective. Here, we propose an approach to crown segmentation using computer vision theories applied in different forest types. First, a dual Gaussian filter was designed with automated adaptive parameter assignment and a screening strategy for false treetops. This preserved the geometric characteristics of sub-canopy trees while eliminating false treetops. Second, anisotropic water expansion controlled by the energy function was applied for accurate crown segmentation. This utilized gradient information from the digital surface model and explored the morphological structures of tree crown boundaries as analogous to the maximal valley height difference from surrounding treetops. We demonstrate the generality of our approach in the subtropical forests within China. Our approach enhanced the detection rate of treetops and ITC segmentation relative to the marker-controlled watershed method, especially in complicated intersections of multiple crowns. A high performance was demonstrated for three pure Eucalyptus plots (a treetop detection rate r ≥ 0.95 and crown width estimation R2 ≥ 0.90 for canopy trees; r ≥ 0.85 and R2 ≥ 0.88 for sub-canopy trees) and three plots dominated by Chinese fir (r ≥ 0.95 and R2 ≥ 0.87 for canopy trees; r ≥ 0.79 and R2 ≥ 0.83 for sub-canopy trees). Finally, in a relatively complex forest park containing a wide range of tree species and sizes, a high performance was also achieved (r = 0.93 and R2 ≥ 0.85 for canopy trees; r = 0.70 and R2 ≥ 0.80 for sub-canopy trees). Our method demonstrates that methods inspired by the computer vision theory can improve on existing approaches, providing the potential for accurate crown segmentation even in mixed forests with complex structures
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cl发布了新的文献求助10
1秒前
浮游应助岱岱采纳,获得10
1秒前
2秒前
2秒前
Wwwwww发布了新的文献求助10
3秒前
woosa完成签到 ,获得积分10
3秒前
sasa完成签到 ,获得积分10
4秒前
快乐的寄容完成签到 ,获得积分10
4秒前
小刘哥儿发布了新的文献求助10
4秒前
柠檬泡芙发布了新的文献求助10
5秒前
Raven应助qwq采纳,获得10
5秒前
丽君发布了新的文献求助10
8秒前
zly完成签到,获得积分10
8秒前
9秒前
cl完成签到,获得积分10
10秒前
敌敌畏完成签到,获得积分10
11秒前
nzlatto完成签到 ,获得积分10
12秒前
13秒前
周子文发布了新的文献求助10
17秒前
lqy完成签到,获得积分10
17秒前
17秒前
18秒前
Criminology34举报暖阳求助涉嫌违规
18秒前
19秒前
19秒前
廖嘉俊发布了新的文献求助10
20秒前
英吉利25发布了新的文献求助10
20秒前
20秒前
Hairee发布了新的文献求助10
22秒前
22秒前
yu202408应助bubble采纳,获得30
23秒前
香蕉觅云应助无私的梦凡采纳,获得10
24秒前
情怀应助味精采纳,获得10
25秒前
lqy发布了新的文献求助10
25秒前
nenoaowu发布了新的文献求助10
25秒前
25秒前
27秒前
27秒前
bkagyin应助布鞋老师采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Le transsexualisme : étude nosographique et médico-légale (en PDF) 500
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5312441
求助须知:如何正确求助?哪些是违规求助? 4456140
关于积分的说明 13865543
捐赠科研通 4344617
什么是DOI,文献DOI怎么找? 2385967
邀请新用户注册赠送积分活动 1380304
关于科研通互助平台的介绍 1348703